LHCb Collaboration(Aaij, R. et al), Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2021). First Observation of the Decay B-s(0) -> K-mu(+)nu(mu) and a Measurement of vertical bar V-ub vertical bar/vertical bar V-cb vertical bar. Phys. Rev. Lett., 126(8), 081804–11pp.
Abstract: The first observation of the suppressed semileptonic B-s(0) -> K-mu(+)nu(mu) decay is reported. Using a data sample recorded in pp collisions in 2012 with the LHCb detector, corresponding to an integrated luminosity of 2 fb(-1), the branching fraction B(B-s(0) -> K-mu(+)nu(mu)) is measured to be [1.06 +/- 0.05(stat) +/- 0.08(syst)] x 10(-4), where the first uncertainty is statistical and the second one represents the combined systematic uncertainties. The decay B-s(0) -> D-s(-)mu(+)nu(mu), where D-s(-) is reconstructed in the final state K+K-pi(-), is used as a normalization channel to minimize the experimental systematic uncertainty. Theoretical calculations on the form factors of the B-s(0) -> K- and B-s(0) -> D-s(-) transitions are employed to determine the ratio of the Cabibbo-Kobayashi-Maskawa matrix elements vertical bar V-ub vertical bar/vertical bar V-cb vertical bar at low and high B-s(0) -> K- momentum transfer.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2020). First observation of the decay Lambda(0)(b) -> eta(c) (1S)pK(-). Phys. Rev. D, 102(11), 112012–12pp.
Abstract: The decay Lambda(0)(b) -> eta(c) (1S)pK(- )is observed for the first time using a data sample of proton-proton collisions, corresponding to an integrated luminosity of 5.5 fb I, collected with the LHCb experiment at a center-of-mass energy of 13 TeV. The branching fraction of the decay is measured, using the Lambda(0)(b) -> J/psi pK(-) decay as a normalization mode, to be B(Lambda(0)(b) -> eta(c) (1S)pK(-)) = (1.06 +/- 0.16 +/- 0.06(-019)(+0.22)) x 10(-4), where the quoted uncertainties are statistical, systematic and due to external inputs, respectively. A study of the eta(c)(1S)p mass spectrum is performed to search for the P-c(4312)(+) pentaquark state. No evidence is B(Lambda(0)(b) -> P-c(4312)K-+(-))xB(P-c(4312)(+)-> eta(c)(1S)p)/B(Lambda(0)(b) -> eta(c) (1S)pK(-)) < 0.24( ) observed and an upper limit of < 0.24 is obtained at the 95% confidence level.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2019). First Observation of the Radiative Decay Lambda(0 )(b)-> Lambda gamma. Phys. Rev. Lett., 123(3), 031801–11pp.
Abstract: The radiative decay Lambda(0 )(b)-> Lambda gamma is observed for the first time using a data sample of proton-proton collisions corresponding to an integrated luminosity of 1.7 fb(-1) collected by the LHCb experiment at a center-of-mass energy of 13 TeV. Its branching fraction is measured exploiting the B-0 -> K*(0)gamma decay as a normalization mode and is found to be B(Lambda(0 )(b)-> Lambda gamma) = (7.1 +/- 1.5 +/- 0.6 +/- 0.7) x 10(-6), where the quoted uncertainties arc statistical, systematic, and systematic from external inputs, respectively. This is the first observation of a radiative decay of a beauty baryon.
|
LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Libralon, S., Martinez-Vidal, F., Oyanguren, A., et al. (2024). First observation of the Λb0→ D+D-Λ decay. J. High Energy Phys., 07(7), 140–22pp.
Abstract: The Lambda(0)(b) -> D+D-Lambda decay is observed for the first time using proton-proton collision data collected by the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 5.3 fb(-1). Using the B-0 -> (D+D-KS0) decay as a reference channel, the product of the relative production cross-section and decay branching fractions is measured to be R = sigma(Lambda b0)/sigma(B0) x B(Lambda(0)(b) -> D+D-Lambda)/B(B-0 -> (D+D-KS0))=0.179 +/- 0.022 +/- 0.014, where the first uncertainty is statistical and the second is systematic. The known branching fraction of the reference channel, B(B-0 -> (D+D-KS0)), and the cross-section ratio, sigma Lambda(b0)/sigma(B0), previously measured by LHCb are used to derive the branching fraction of the Lambda(0)(b)-> D+D-Lambda decay B(Lambda(0)(b) -> D+D-Lambda) = (1.24 +/- 0.15 +/- 0.10 +/- 0.28 +/- 0.11)x10(-4), where the third and fourth contributions are due to uncertainties of B(B-0 -> (D+D-KS0)) and sigma(Lambda b0)/sigma(B0), respectively. Inspection of the D+Lambda and D+D- invariant-mass distributions suggests a rich presence of intermediate resonances in the decay. The Lambda(0)(b) -> D*+D-Lambda decay is also observed for the first time as a partially reconstructed component in the D+D-Lambda invariant mass spectrum.
|
LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Libralon, S., Martinez-Vidal, F., Oyanguren, A., et al. (2024). First observation of Λb0 → Σc(*)+ + D(*) – K- decays. Phys. Rev. D, 110(3), L031104–13pp.
Abstract: The four decays, Λ0b→Σ(∗)++cD(∗)−K−, are observed for the first time using proton-proton collision data collected with the LHCb detector at a centre-of-mass energy of 13TeV, corresponding to an integrated luminosity of 6fb−1. By considering the Λ0b→Λ+cD⎯⎯⎯⎯0K− decay as reference channel, the following branching fraction ratios are measured to be
(Λ0b→Σ++cD−K−)(Λ0b→Λ+cD⎯⎯⎯⎯0K−)=0.282±0.016±0.016±0.005,(Λ0b→Σ∗++cD−K−)(Λ0b→Σ++cD−K−)=0.460±0.052±0.028,(Λ0b→Σ++cD∗−K−)(Λ0b→Σ++cD−K−)=2.261±0.202±0.129±0.046,(Λ0b→Σ∗++cD∗−K−)(Λ0b→Σ++cD−K−)=0.896±0.137±0.066±0.018,
where the first uncertainties are statistical, the second are systematic, and the third are due to uncertainties in the branching fractions of intermediate particle decays. These initial observations mark the beginning of pentaquark searches in these modes, with more data set to become available following the LHCb upgrade.
|
LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Rebollo De Miguel, M., et al. (2024). Fraction of χc Decays in Prompt J/ψ Production Measured in pPb Collisions at root s(NN)=8.16 TeV. Phys. Rev. Lett., 132(10), 102302–12pp.
Abstract: The fraction of chi(c1) and chi(c2) decays in the prompt J=psi yield, F-chi c -> J=psi = sigma(chi c) -> J=psi/ sigma(J/ psi) , is measured by the LHCb detector in pPb collisions at root s(NN) = 8.16 TeV. The study covers the forward (1.5 < y* < 4.0) and sNN backward (-5.0 < y* < -2.5) rapidity regions, where y* is the J=psi rapidity in the nucleon -nucleon centerof -mass system. Forward and backward rapidity samples correspond to integrated luminosities of 13.6 +/- 0.3 and 20.8 +/- 0.5 nb(-1) , respectively. The result is presented as a function of the J=psi transverse momentum pT;J/ psi in the range 1 < pT -> J/ psi < 20 GeV=c. The F-chi c -> J=psi fraction at forward rapidity is compatible with the LHCb measurement performed in pp collisions at root s= 7 TeV, whereas the result at s backward rapidity is 2.4 sigma larger than in the forward region for 1 < pT,(J/ psi) < 3 GeV/ c. The increase of F-chi c -> J/ psi at low pT;J/ psi at backward rapidity is compatible with the suppression of the psi(2S) contribution to the prompt J/ psi yield. The lack of in -medium dissociation of chi(c) states observed in this study sets an upper limit of 180 MeV on the free energy available in these pPb collisions to dissociate or inhibit charmonium state formation.
|
LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Rebollo De Miguel, M., et al. (2024). Helium identification with LHCb. J. Instrum., 19(2), P02010–23pp.
Abstract: The identification of helium nuclei at LHCb is achieved using a method based on measurements of ionisation losses in the silicon sensors and timing measurements in the Outer Tracker drift tubes. The background from photon conversions is reduced using the RICH detectors and an isolation requirement. The method is developed using pp collision data at root s = 13 TeV recorded by the LHCb experiment in the years 2016 to 2018, corresponding to an integrated luminosity of 5.5 fb(-1). A total of around 10(5) helium and antihelium candidates are identified with negligible background contamination. The helium identification efficiency is estimated to be approximately 50% with a corresponding background rejection rate of up to O(10(12)). These results demonstrate the feasibility of a rich programme of measurements of QCD and astrophysics interest involving light nuclei.
|
Aiola, S., Amhis, Y., Billoir, P., Jashal, B. K., Henry, L., Oyanguren, A., et al. (2021). Hybrid seeding: A standalone track reconstruction algorithm for scintillating fibre tracker at LHCb. Comput. Phys. Commun., 260, 107713–5pp.
Abstract: We describe the Hybrid seeding, a stand-alone pattern recognition algorithm aiming at finding charged particle trajectories for the LHCb upgrade. A significant improvement to the charged particle reconstruction efficiency is accomplished by exploiting the knowledge of the LHCb magnetic field and the position of energy deposits in the scintillating fibre tracker detector. Moreover, we achieve a low fake rate and a small contribution to the overall timing budget of the LHCb real-time data processing.
|
LHCb Collaboration(Aaij, R. et al), Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., & Ruiz Vidal, J. (2022). Identification of charm jets at LHCb. J. Instrum., 17(2), P02028–23pp.
Abstract: The identification of charm jets is achieved at LHCb for data collected in 2015-2018 using a method based on the properties of displaced vertices reconstructed and matched with jets. The performance of this method is determined using a dijet calibration dataset recorded by the LHCb detector and selected such that the jets are unbiased in quantities used in the tagging algorithm. The charm-tagging efficiency is reported as a function of the transverse momentum of the jet. The measured efficiencies are compared to those obtained from simulation and found to be in good agreement.
|
LHCb Collaboration(Aaij, R. et al), Jaimes Elles, S. J., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., Rebollo De Miguel, M., et al. (2024). Improved Measurement of CP Violation Parameters in B0s → J/ψ K+ K- Decays in the Vicinity of the φ(1020) Resonance. Phys. Rev. Lett., 132(5), 051802–12pp.
Abstract: The decay-time-dependent CP asymmetry in B0s -> J=psi(-> mu+mu-)K+K- decays is measured using proton-proton collision data, corresponding to an integrated luminosity of 6 fb-1, collected with the LHCb detector at a center-of-mass energy of 13 TeV. Using a sample of approximately 349 000 B0s signal decays with an invariant K+K- mass in the vicinity of the phi(1020) resonance, the CP-violating phase phi s is measured, along with the difference in decay widths of the light and heavy mass eigenstates of the B0s-B over bar 0s system, Delta Gamma s, and the difference of the average B0s and B0 meson decay widths, Gamma s – Gamma d. The values obtained are phi s = -0.039 +/- 0.022 +/- 0.006 rad, Delta Gamma s = 0.0845 +/- 0.0044 +/- 0.0024 ps-1, and -0.0015 +/- 0.0014 ps-1, where the first uncertainty is statistical and the second systematic. These are the most precise single measurements to date and are consistent with expectations based on the Standard Model and with the previous LHCb analyses of this decay. These results are combined with previous independent LHCb measurements. The phase phi s is also measured independently for each polarization state of the K+K- system and shows no evidence for polarization dependence.
|