Barenboim, G., Calatayud-Cadenillas, A. M., Gago, A. M., & Ternes, C. A. (2024). Quantum decoherence effects on precision measurements at DUNE and T2HK. Phys. Lett. B, 852, 138626–11pp.
Abstract: We investigate the potential impact of neutrino quantum decoherence on the precision measurements of standard neutrino oscillation parameters in the DUNE and T2HK experiments. We show that the measurement of delta(CP), sin(2) theta(13) and sin(2) theta(23) is stronger effected in DUNE than in T2HK. On the other hand, DUNE would have a better sensitivity than T2HK to observe decoherence effects. By performing a combined analysis of DUNE and T2HK we show that a robust measurement of standard parameters would be possible, which is not guaranteed with DUNE data alone.
|
Barenboim, G., Chen, J. Z., Hannestad, S., Oldengott, I. M., Tram, T., & Wong, Y. Y. Y. (2021). Invisible neutrino decay in precision cosmology. J. Cosmol. Astropart. Phys., 03(3), 087–53pp.
Abstract: We revisit the topic of invisible neutrino decay in the precision cosmological context, via a first-principles approach to understanding the cosmic microwave background and large-scale structure phenomenology of such a non-standard physics scenario. Assuming an effective Lagrangian in which a heavier standard-model neutrino nu(H) couples to a lighter one nu(l) and a massless scalar particle phi via a Yukawa interaction, we derive from first principles the complete set of Boltzmann equations, at both the spatially homogeneous and the firstorder inhomogeneous levels, for the phase space densities of nu(H), nu(l), and phi in the presence of the relevant decay and inverse decay processes. With this set of equations in hand, we perform a critical survey of recent works on cosmological invisible neutrino decay in both limits of decay while nu(H) is ultra-relativistic and non-relativistic. Our two main findings are: (i) in the non-relativistic limit, the effective equations of motion used to describe perturbations in the neutrino-scalar system in the existing literature formally violate momentum conservation and gauge invariance, and (ii) in the ultra-relativistic limit, exponential damping of the anisotropic stress does not occur at the commonly-used rate Gamma(T) = (1/tau(0))( m(nu H)/E-nu H)(3), but at a rate similar to (1/ tau(0))(m(nu H)/E-nu H)(5). Both results are model-independent. The impact of the former finding on the cosmology of invisible neutrino decay is likely small. The latter, however, implies a significant revision of the cosmological limit on the neutrino lifetime tau(0) from tau(old)(0) greater than or similar to 1.2 x 10(9) s (m(nu H)/50 meV)(3) to tau(0) greater than or similar to (4 x 10(5) -> 4 x 10(6)) s (m(nu H)/50 meV)(5).
|
Barenboim, G., Chun, E. J., Jung, S. H., & Park, W. I. (2014). Implications of an axino LSP for naturalness. Phys. Rev. D, 90(3), 035020–12pp.
Abstract: Both the naturalness of the electroweak symmetry breaking and the resolution of the strong CP problem may require a small Higgsino mass μgenerated by a realization of the DFSZ axion model. Assuming the axino is the lightest supersymmetric particle, we study its implications on μand the axion scale. Copiously produced light Higgsinos at collider (effectively only neutral next-to-lightest superparticles pairs) eventually decay to axinos leaving prompt multileptons or displaced vertices which are being looked for at the LHC. We use latest LHC7 + 8 results to derive current limits on μand the axion scale. Various Higgsino-axino phenomenology is illustrated by comparing with a standard case without lightest axinos as well as with a more general case with additional light gauginos in the spectrum.
|
Barenboim, G., Chun, E. J., & Lee, H. M. (2014). Coleman-Weinberg inflation in light of Planck. Phys. Lett. B, 730, 81–88.
Abstract: We revisit a single field inflationary model based on Coleman-Weinberg potentials. We show that in small field Coleman-Weinberg inflation, the observed amplitude of perturbations needs an extremely small quartic coupling of the inflaton, which might be a signature of radiative origin. However, the spectral index obtained in a standard cosmological scenario turns out to be outside the 2 sigma region of the Planck data. When a non-standard cosmological framework is invoked, such as brane-world cosmology in the Randall-Sundrum model, the spectral index can be made consistent with Planck data within la, courtesy of the modification in the evolution of the Hubble parameter in such a scheme. We also show that the required inflaton quartic coupling as well as a phenomenologically viable B – L symmetry breaking together with a natural electroweak symmetry breaking can arise dynamically in a generalized B – L extension of the Standard Model where the full potential is assumed to vanish at a high scale.
|
Barenboim, G., Denton, P. B., & Oldengott, I. M. (2019). Constraints on inflation with an extended neutrino sector. Phys. Rev. D, 99(8), 083515–9pp.
Abstract: Constraints on inflationary models typically assume only the standard models of cosmology and particle physics. By extending the neutrino sector to include a new interaction with a light scalar mediator (m(phi) similar to MeV), it is possible to relax these constraints, in particular via opening up regions of the parameter space of the spectral index n(s). These new interactions can be probed at IceCube via interactions of astrophysical neutrinos with the cosmic neutrino background for nearly all of the relevant parameter space.
|
Barenboim, G., Denton, P. B., Parke, S. J., & Ternes, C. A. (2019). Neutrino oscillation probabilities through the looking glass. Phys. Lett. B, 791, 351–360.
Abstract: In this paper we review different expansions for neutrino oscillation probabilities in matter in the context of long-baseline neutrino experiments. We examine the accuracy and computational efficiency of different exact and approximate expressions. We find that many of the expressions used in the literature are not precise enough for the next generation of long-baseline experiments, but several of them are while maintaining comparable simplicity. The results of this paper can be used as guidance to both phenomenologists and experimentalists when implementing the various oscillation expressions into their analysis tools.
|
Barenboim, G., Fernandez-Martinez, E., Mena, O., & Verde, L. (2010). The dark side of curvature. J. Cosmol. Astropart. Phys., 03(3), 008–17pp.
Abstract: Geometrical tests such as the combination of the Hubble parameter H(z) and the angular diameter distance d(A)(z) can, in principle, break the degeneracy between the dark energy equation of state parameter w(z), and the spatial curvature Omega(k) in a direct, model-independent way. In practice, constraints on these quantities achievable from realistic experiments, such as those to be provided by Baryon Acoustic Oscillation (BAO) galaxy surveys in combination with CMB data, can resolve the cosmic confusion between the dark energy equation of state parameter and curvature only statistically and within a parameterized model for w(z). Combining measurements of both H(z) and d(A)(z) up to sufficiently high redshifts z similar to 2 and employing a parameterization of the redshift evolution of the dark energy equation of state are the keys to resolve the w(z) – Omega(k) degeneracy.
|
Barenboim, G., & Gago, A. M. (2024). Quantum decoherence effects: A complete treatment. Phys. Rev. D, 110(9), 095005–9pp.
Abstract: Physical systems in real life are inextricably linked to their surroundings and never completely separated from them. Truly closed systems do not exist. The phenomenon of decoherence, which is brought about by the interaction with the environment, removes the relative phase of quantum states in superposition and makes them incoherent. In neutrino physics, decoherence, although extensively studied has only been analyzed thus far exclusively in terms of its dissipative characteristics. While it is true that dissipation, or the exponential suppression, eventually is the main observable effect, the exchange of energy between the medium and the system, is an important factor that has been overlooked up until now. In this work, we introduce this term and analyze its consequences.
|
Barenboim, G., & Hill, C. T. (2021). Sterile neutrinos, black hole vacuum and holographic principle. Eur. Phys. J. C, 81(2), 150–9pp.
Abstract: We construct an effective field theory (EFT) model that describes matter field interactions with Schwarzschild mini-black-holes (SBH's), treated as a scalar field, B0(x). Fermion interactions with SBH's require a complex spurion field, theta ij, which we interpret as the EFT description of “holographic information,” which is correlated with the SBH as a composite system. We consider Hawking's virtual black hole vacuum (VBH) as a Higgs phase, B0=V. Integrating sterile neutrino loops, the information field theta ij is promoted to a dynamical field, necessarily developing a tachyonic instability and acquiring a VEV of order the Planck scale. For N sterile neutrinos this breaks the vacuum to SU(N)xU(1)/SO(N) with N degenerate Majorana masses, and <mml:mfrac>12</mml:mfrac>N(N+1) Nambu-Goldstone neutrino-Majorons. The model suggests many scalars fields, corresponding to all fermion bilinears, may exist bound nonperturbatively by gravity.
|
Barenboim, G., Hirn, J., & Sanz, V. (2021). Symmetry meets AI. SciPost Phys., 11(1), 014–11pp.
Abstract: We explore whether Neural Networks (NNs) can discover the presence of symmetries as they learn to perform a task. For this, we train hundreds of NNs on a decoy task based on well-controlled Physics templates, where no information on symmetry is provided. We use the output from the last hidden layer of all these NNs, projected to fewer dimensions, as the input for a symmetry classification task, and show that information on symmetry had indeed been identified by the original NN without guidance. As an interdisciplinary application of this procedure, we identify the presence and level of symmetry in artistic paintings from different styles such as those of Picasso, Pollock and Van Gogh.
|