Lerendegui-Marco, J., Cisterna, G., Hallam, J., Babiano-Suarez, V., Balibrea-Correa, J., Calvo, D., et al. (2025). Imaging neutrons with a position-sensitive monolithic CLYC detector. Nucl. Instrum. Methods Phys. Res. A, 1079, 170594–12pp.
Abstract: In this work, we have developed and characterized a position-sensitive CLYC detector that acts as the neutron imaging layer and y-ray Compton scatterer of the novel dual Gamma-ray and Neutron Vision (GN-Vision) system, which aims at simultaneously obtaining information about the spatial origin of y-ray and neutron sources. We first investigated the performance of two large 50 x 50 mm2 monolithic CLYC crystals, 8 and 13 mm thick respectively, coupled to a pixelated SiPM in terms of energy resolution and neutron-gamma discrimination. The response of two different 95% 6Li-enriched CLYC detectors coupled to an array of 8 x 8 SiPMs was studied in comparison to the results of a conventional photo-multiplier tube. An energy resolution of about 6% with PMT and 8% with SiPMs for the 137Cs peak and a figure of merit of 3-4 for the neutron-gamma discrimination have been obtained. The spatial response of the CLYC-SiPM detector to y-rays and neutrons has also been characterized using charge modulation-based multiplexing techniques based on a diode-coupled charge division circuit. Average resolutions close to 5 mm FWHM with good linearity are obtained in the transverse crystal plane. Last, this work presents the first proof-of-concept experiments of the neutron imaging capability using a neutron pinhole collimator attached to the developed position sensitive CLYC detector.
|
Babiano-Suarez, V., Balibrea-Correa, J., Ladarescu, I., Lerendegui-Marco, J., & Domingo-Pardo, C. (2025). A computer-vision aided Compton-imaging system for radioactive waste characterization and decommissioning of nuclear power plants. Nucl. Instrum. Methods Phys. Res. A, 1076, 170449–14pp.
Abstract: Nuclear energy production is inherently tied to the management and disposal of radioactive waste. Enhancing classification and monitoring tools is therefore crucial, with significant socioeconomic implications. This paper reports on the applicability and performance of a high-efficiency, cost-effective and portable Compton camera for detecting and visualizing low-and medium-level radioactive waste from the decommissioning and regular operation of nuclear power plants. The results demonstrate the good performance of Compton imaging for this type of application, both in terms of image resolution and reduced measuring time. A technical readiness level of TRL7 has been thus achieved with this system prototype, as demonstrated with dedicated field measurements carried out at the radioactive-waste disposal plant of El Cabril (Spain) utilizing a pluarility of radioactive-waste drums from decomissioned nuclear power plants. The performance of the system has been enhanced by means of computer-vision techniques in combination with advanced Compton-image reconstruction algorithms based on Maximum-Likelihood Expectation Maximization. Finally, we also show the feasibility of 3D tomographic reconstruction from a series of relatively short measurements around the objects of interest. The potential of this imaging system to enhance nuclear waste management makes it a promising innovation for the nuclear industry.
|
Perkowski, J. et al, Babiano-Suarez, V., Balibrea Correa, J., Domingo-Pardo, C., Ladarescu, I., & Lerendegui-Marco, J. (2024). Multi-section fission ionization chamber for measurement of 239Pu(n, γ) reaction in fission tagging method. Nucl. Instrum. Methods Phys. Res. A, 1067, 169649–8pp.
Abstract: The Pu-239(n, gamma) reaction cross section is very important for operation of both thermal and fast reactors, when loaded with MOX fuels. According to the NEA/OECD High Priority Request List the precision of cross section data for this reaction should be improved. The cross section of (n, f) reaction is much higher compared to (n, gamma) for this isotope. In such conditions the fission tagging technique could be applied to identify the fission background. In the past, this technique was successfully used for capture measurements at the nTOF facility at CERN. The multi-section fission ionization chamber was constructed and used in the combination with Total Absorption Calorimeter (TAC) for detecting gamma rays for the precise measurement of Pu-239(n, gamma) reaction cross section at the nTOF facility.
|
Lerendegui-Marco, J., Babiano-Suarez, V., Domingo-Pardo, C., Ladarescu, I., Tarifeno-Saldivia, A., & de la Fuente-Rosales, G. (2024). Pushing the high count rate limits of scintillation detectors for challenging neutron-capture experiments. Nucl. Instrum. Methods Phys. Res. A, 1064, 169385–13pp.
Abstract: One of the critical aspects for the accurate determination of neutron capture cross sections when combining time-of-flight and total energy detector techniques is the characterization and control of systematic uncertainties associated to the measuring devices. In this work we explore the most conspicuous effects associated to harsh count rate conditions: dead-time and pile-up effects. Both effects, when not properly treated, can lead to large systematic uncertainties and bias in the determination of neutron cross sections. In the majority of neutron capture measurements carried out at the CERN nTOF facility, the detectors of choice are the C6D6 liquid-based either in form of large-volume cells or recently commissioned sTED detector array, consisting of much smaller-volume modules. To account for the aforementioned effects, we introduce a Monte Carlo model for these detectors mimicking harsh count rate conditions similar to those happening at the CERN nTOF 20 m flight path vertical measuring station. The model parameters are extracted by comparison with the experimental data taken at the same facility during 2022 experimental campaign. We propose a novel methodology to consider both, dead-time and pile-up effects simultaneously for these fast detectors and check the applicability to experimental data from Au-197(n, gamma), including the saturated 4.9 eV resonance which is an important component of normalization for neutron cross section measurements.
|
Balibrea-Correa, J., Lerendegui-Marco, J., Babiano-Suarez, V., Caballero, L., Calvo, D., Ladarescu, I., et al. (2021). Machine Learning aided 3D-position reconstruction in large LaCl3 crystals. Nucl. Instrum. Methods Phys. Res. A, 1001, 165249–17pp.
Abstract: We investigate five different models to reconstruct the 3D gamma-ray hit coordinates in five large LaCl3(Ce) monolithic crystals optically coupled to pixelated silicon photomultipliers. These scintillators have a base surface of 50 x 50 mm(2) and five different thicknesses, from 10 mm to 30 mm. Four of these models are analytical prescriptions and one is based on a Convolutional Neural Network. Average resolutions close to 1-2 mm fwhm are obtained in the transverse crystal plane for crystal thicknesses between 10 mm and 20 mm using analytical models. For thicker crystals average resolutions of about 3-5 mm fwhm are obtained. Depth of interaction resolutions between 1 mm and 4 mm are achieved depending on the distance of the interaction point to the photosensor surface. We propose a Machine Learning algorithm to correct for linearity distortions and pin-cushion effects. The latter allows one to keep a large field of view of about 70%-80% of the crystal surface, regardless of crystal thickness. This work is aimed at optimizing the performance of the so-called Total Energy Detector with Compton imaging capability (i-TED) for time-of-flight neutron capture cross-section measurements.
|
n_TOF Collaboration(Manna, A. et al), Babiano-Suarez, V., Caballero-Ontanaya, L., Domingo-Pardo, C., Ladarescu, I., & Tain, J. L. (2025). New insights on fission of 235U induced by high energy neutrons from a new measurement at n_TOF. Phys. Lett. B, 860, 139213–8pp.
Abstract: The U-235(n, f) reaction cross section was measured relative to neutron-proton elastic scattering for the first time in the energy region from 10 MeV to 440 MeV at the CERN n_TOF facility, extending the upper limit of the only previous measurement in the literature by more than 200 MeV. For neutron energies below 200 MeV, our results agree within one standard deviation with data in literature. Above 200 MeV, the comparison of model calculations to our data indicates the need to introduce a transient time in neutron-induced fission to allow the simultaneous description of (n, f) and (p, f) reactions.
|
Lerendegui-Marco, J., Hallam, J., Cisterna, G., Sanchis-Molto, A., Balibrea-Correa, J., Babiano-Suarez, V., et al. (2025). First experimental results and optimization study of the portable neutron-gamma imager GN-Vision. Appl. Radiat. Isot., 224, 111826–13pp.
Abstract: GN-Vision is a compact, dual-modality imaging device designed to simultaneously localize the spatial origin of y-ray and slow neutron sources, with potential applications in nuclear safety, security, and hadron therapy. The system utilizes two position-sensitive detection planes, combining Compton imaging techniques for yray visualization with passive collimation for imaging slow and thermal neutrons (energies below 100 eV). This paper presents the first experimental outcomes from the initial GN-Vision prototype, focused on the development of its neutron imaging capabilities. Following this experimental assessment, we explore the device's performance potential and discuss several Monte Carlo simulation-based optimizations aimed at refining the neutron collimation system. These optimizations seek to improve real-time imaging efficiency and cost-effectiveness, enhancing GN-Vision's applicability for future practical deployments.
|
n_TOF Collaboration(Alcayne, V. et al), Balibrea-Correa, J., Domingo-Pardo, C., Lerendegui-Marco, J., Babiano-Suarez, V., & Ladarescu, I. (2024). A Segmented Total Energy Detector (sTED) optimized for (n,γ) cross-section measurements at n_TOF EAR2. Radiat. Phys. Chem., 217, 111525–11pp.
Abstract: The neutron time-of-flight facility nTOF at CERN is a spallation source dedicated to measurements of neutroninduced reaction cross-sections of interest in nuclear technologies, astrophysics, and other applications. Since 2014, Experimental ARea 2 (EAR2) is operational and delivers a neutron fluence of similar to 4 center dot 10(7) neutrons per nominal proton pulse, which is similar to 50 times higher than the one of Experimental ARea 1 (EAR1) of similar to 8 center dot 10(5) neutrons per pulse. The high neutron flux at EAR2 results in high counting rates in the detectors that challenged the previously existing capture detection systems. For this reason, a Segmented Total Energy Detector (sTED) has been developed to overcome the limitations in the detector's response, by reducing the active volume per module and by using a photo-multiplier (PMT) optimized for high counting rates. This paper presents the main characteristics of the sTED, including energy and time resolution, response to gamma-rays, and provides as well details of the use of the Pulse Height Weighting Technique (PHWT) with this detector. The sTED has been validated to perform neutron-capture cross-section measurements in EAR2 in the neutron energy range from thermal up to at least 400 keV. The detector has already been successfully used in several measurements at nTOF EAR2.
|
Torres-Sanchez, P., Lerendegui-Marco, J., Balibrea-Correa, J., Babiano-Suarez, V., Gameiro, B., Ladarescu, I., et al. (2025). The potential of the i-TED Compton camera array for real-time boron imaging and determination during treatments in Boron Neutron Capture Therapy. Appl. Radiat. Isot., 217, 111649–9pp.
Abstract: This paper explores the adaptation and application of i-TED Compton imagers for real-time dosimetry in Boron Neutron Capture Therapy (BNCT). The i-TED array, previously utilized in nuclear astrophysics experiments at CERN, is being optimized for detecting and imaging 478 keV gamma-rays, critical for accurate BNCT dosimetry. Detailed Monte Carlo simulations were used to optimize the i-TED detector configuration and enhance its performance in the challenging radiation environment typical of BNCT. Additionally, advanced 3D image reconstruction algorithms, including a combination of back-projection and List-Mode Maximum Likelihood Expectation Maximization (LM-MLEM), are implemented and validated through simulations. Preliminary experimental tests at the Institut Laue-Langevin (ILL) demonstrate the potential of i-TED in simplified conditions, with ongoing experiments focusing on testing imaging capabilities in realistic BNCT conditions.
|
n_TOF Collaboration(Amaducci, S. et al), Babiano-Suarez, V., Caballero-Ontanaya, L., Domingo-Pardo, C., Ladarescu, I., Tain, J. L., et al. (2024). Measurement of the 140Ce(n,γ) Cross Section at n_TOF and Its Astrophysical Implications for the Chemical Evolution of the Universe. Phys. Rev. Lett., 132(12), 122701–8pp.
Abstract: 140Ce(n, gamma) is a key reaction for slow neutron -capture (s -process) nucleosynthesis due to being a bottleneck in the reaction flow. For this reason, it was measured with high accuracy (uncertainty approximate to 5%) at the n_TOF facility, with an unprecedented combination of a high purity sample and low neutron -sensitivity detectors. The measured Maxwellian averaged cross section is up to 40% higher than previously accepted values. Stellar model calculations indicate a reduction around 20% of the s -process contribution to the Galactic cerium abundance and smaller sizeable differences for most of the heavier elements. No variations are found in the nucleosynthesis from massive stars.
|