toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Zornoza, J.D. doi  openurl
  Title Review on Indirect Dark Matter Searches with Neutrino Telescopes Type Journal Article
  Year 2021 Publication Universe Abbreviated Journal Universe  
  Volume 7 Issue 11 Pages 415 - 10pp  
  Keywords dark matter; neutrino telescopes; IceCube; ANTARES; KM3NeT; SuperK  
  Abstract The search for dark matter is one of the hottest topics in Physics today. The fact that about 80% of the matter of the Universe is of unknown nature has triggered an intense experimental activity to detect this kind of matter and a no less intense effort on the theory side to explain it. Given the fact that we do not know the properties of dark matter well, searches from different fronts are mandatory. Neutrino telescopes are part of this experimental quest and offer specific advantages. Among the targets to look for dark matter, the Sun and the Galactic Center are the most promising ones. Considering models of dark matter densities in the Sun, neutrino telescopes have put the best limits on spin-dependent cross section of proton-WIMP scattering. Moreover, they are competitive in the constraints on the thermally averaged annihilation cross-section for high WIMP masses when looking at the Galactic Centre. Other results are also reviewed.  
  Address [de Dios Zornoza, Juan] IFIC Inst Fis Corpuscular UV CSIC, C Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: zornoza@ific.uv.es  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000723346500001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5044  
Permanent link to this record
 

 
Author (down) Yang, Z.; Cao, X.; Guo, F.K.; Nieves, J.; Pavon Valderrama, M. url  doi
openurl 
  Title Strange molecular partners of the Z(c)(3900) and Z(c)(4020) Type Journal Article
  Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 103 Issue 7 Pages 074029 - 8pp  
  Keywords  
  Abstract Quantum chromodynamics presents a series of exact and approximate symmetries which can be exploited to predict new hadrons from previously known ones. The Z(c)(3900) and Z(c)(4020), which have been theorized to be isovector D*(D) over bar and D*(D) over bar* molecules [I-G(J(PC)) = 1(-)(1)(+-))], are no exception. Here we argue that from SU(3)-flavor symmetry, we should expect the existence of strange partners of the Z(c)'s with hadronic molecular configurations D*(D) over bar (s) – D (D) over bar*(s) and D*(D) over bar*(s) (or, equivalently, quark content c (c) over bars (q) over bar, with q = u, d). The quantum numbers of these Z(cs) and Z(cs)* structures would be I(J(P)) = 1/2 (1(+)). The predicted masses of these partners depend on the details of the theoretical scheme used, but they should be around the D*(D) over bar (s) – D (D) over bar*(s) and D*(D) over bar*(s) thresholds, respectively. Moreover, any of these states could be either a virtual pole or a resonance. We show that, together with a possible triangle singularity contribution, such a picture nicely agrees with the very recent BESIII data of the e(+)e(-) -> K+((Ds-D*0) + D*D--(s)0).  
  Address [Yang, Zhi] Univ Elect Sci & Technol China, Sch Phys, Chengdu 610054, Peoples R China, Email: zhiyang@uestc.edu.cn;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000648581900002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4832  
Permanent link to this record
 

 
Author (down) Yang, W.Q.; Pan, S.; Di Valentino, E.; Mena, O.; Melchiorri, A. url  doi
openurl 
  Title 2021-H-0 odyssey: closed, phantom and interacting dark energy cosmologies Type Journal Article
  Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 10 Issue 10 Pages 008 - 21pp  
  Keywords baryon acoustic oscillations; cosmological parameters from CMBR; cosmological perturbation theory; dark energy theory  
  Abstract Up-to-date cosmological data analyses have shown that (sigma) a closed universe is preferred by the Planck data at more than 99% CL, and (b) interacting scenarios offer a very compelling solution to the Hubble constant tension. In light of these two recent appealing scenarios, we consider here an interacting dark matter-dark energy model with a non-zero spatial curvature component and a freely varying dark energy equation of state in both the quintessential and phantom regimes. When considering Cosmic Microwave Background data only, a phantom and closed universe can perfectly alleviate the Hubble tension, without the necessity of a coupling among the dark sectors. Accounting for other possible cosmological observations compromises the viability of this very attractive scenario as a global solution to current cosmological tensions, either by spoiling its effectiveness concerning the H-0 problem, as in the case of Supernovae Ia data, or by introducing a strong disagreement in the preferred value of the spatial curvature, as in the case of Baryon Acoustic Oscillations.  
  Address [Yang, Weiqiang] Liaoning Normal Univ, Dept Phys, Dalian 116029, Peoples R China, Email: d11102004@163.com;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000711524000011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5012  
Permanent link to this record
 

 
Author (down) Yang, W.Q.; Di Valentino, E.; Pan, S.; Mena, O. url  doi
openurl 
  Title Emergent Dark Energy, neutrinos and cosmological tensions Type Journal Article
  Year 2021 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe  
  Volume 31 Issue Pages 100762 - 9pp  
  Keywords  
  Abstract The Phenomenologically Emergent Dark Energy model, a dark energy model with the same number of free parameters as the flat Lambda CDM, has been proposed as a working example of a minimal model which can avoid the current cosmological tensions. A straightforward question is whether or not the inclusion of massive neutrinos and extra relativistic species may spoil such an appealing phenomenological alternative. We present the bounds on M-nu and N-eff and comment on the long standing H-0 and sigma(8) tensions within this cosmological framework with a wealth of cosmological observations. Interestingly, we find, at 95% confidence level, and with the most complete set of cosmological observations, M-nu similar to 0.21(-0.14)(+0.15) eV and N-eff = 3.03 +/- 0.32 i.e. an indication for a non-zero neutrino mass with a significance above 2 sigma. The well known Hubble constant tension is considerably easened, with a significance always below the 2 sigma level. (C) 2020 Elsevier B.V. All rights reserved.  
  Address [Yang, Weiqiang] Liaoning Normal Univ, Dept Phys, Dalian 116029, Peoples R China, Email: d11102004@163.com;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-6864 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000630235100022 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4752  
Permanent link to this record
 

 
Author (down) Yamamoto, H. doi  openurl
  Title The International Linear Collider Project-Its Physics and Status Type Journal Article
  Year 2021 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel  
  Volume 13 Issue 4 Pages 674 - 15pp  
  Keywords Higgs particle; elementary particles; standard theory; linear collider; dark matter; top quark  
  Abstract The discovery of Higgs particle has ushered in a new era of particle physics. Even though the list of members of the standard theory of particle physics is now complete, the shortcomings of the theory became ever more acute. It is generally considered that the best solution to the problems is an electron-positron collider that can study Higgs particle with high precision and high sensitivity; namely, a Higgs factory. Among a few candidates for Higgs factory, the International Linear Collider (ILC) is currently the most advanced in its program. In this article, we review the physics and the project status of the ILC including its energy expandability.  
  Address [Yamamoto, Hitoshi] Tohoku Univ, Grad Sch Sci, Sendai, Miyagi 9800812, Japan, Email: yhitoshi@epx.phys.tohoku.ac.jp  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000643622400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4797  
Permanent link to this record
 

 
Author (down) Wimmer, K. et al; Algora, A.; Rubio, B. url  doi
openurl 
  Title Shape Changes in the Mirror Nuclei Kr-70 and Se-70 Type Journal Article
  Year 2021 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 126 Issue 7 Pages 072501 - 6pp  
  Keywords  
  Abstract We studied the proton-rich T-z = -1 nucleus Kr-70 through inelastic scattering at intermediate energies in order to extract the reduced transition probability, B(E2; 0+ -> 2+). Comparison with the other members of the A = 70 isospin triplet, Br-70 and Se-70, studied in the same experiment, shows a 3 sigma deviation from the expected linearity of the electromagnetic matrix elements as a function of T-z. At present, no established nuclear structure theory can describe this observed deviation quantitatively. This is the first violation of isospin symmetry at this level observed in the transition matrix elements. A heuristic approach may explain the anomaly by a shape change between the mirror nuclei Kr-70 and Se-70 contrary to the model predictions.  
  Address [Wimmer, K.] CSIC, Inst Estruct Mat, E-28006 Madrid, Spain, Email: k.wimmer@csic.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000619237200006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4715  
Permanent link to this record
 

 
Author (down) Wilson, J.N. et al; Algora, A. doi  openurl
  Title Angular momentum generation in nuclear fission Type Journal Article
  Year 2021 Publication Nature Abbreviated Journal Nature  
  Volume 590 Issue 7847 Pages 566-570  
  Keywords  
  Abstract When a heavy atomic nucleus splits (fission), the resulting fragments are observed to emerge spinning(1); this phenomenon has been a mystery in nuclear physics for over 40 years(2,3). The internal generation of typically six or seven units of angular momentum in each fragment is particularly puzzling for systems that start with zero, or almost zero, spin. There are currently no experimental observations that enable decisive discrimination between the many competing theories for the mechanism that generates the angular momentum(4-12). Nevertheless, the consensus is that excitation of collective vibrational modes generates the intrinsic spin before the nucleus splits (pre-scission). Here we show that there is no significant correlation between the spins of the fragment partners, which leads us to conclude that angular momentum in fission is actually generated after the nucleus splits (post-scission). We present comprehensive data showing that the average spin is strongly mass-dependent, varying in saw-tooth distributions. We observe no notable dependence of fragment spin on the mass or charge of the partner nucleus, confirming the uncorrelated post-scission nature of the spin mechanism. To explain these observations, we propose that the collective motion of nucleons in the ruptured neck of the fissioning system generates two independent torques, analogous to the snapping of an elastic band. A parameterization based on occupation of angular momentum states according to statistical theory describes the full range of experimental data well. This insight into the role of spin in nuclear fission is not only important for the fundamental understanding and theoretical description of fission, but also has consequences for the gamma-ray heating problem in nuclear reactors(13,14), for the study of the structure of neutron-rich isotopes(15,16), and for the synthesis and stability of super-heavy elements(17,18). gamma-ray spectroscopy experiments on the origin of spin in the products of nuclear fission of spin-zero nuclei suggest that the fission fragments acquire their spin after scission, rather than before.  
  Address [Wilson, J. N.; Thisse, D.; Lebois, M.; Jovancevic, N.; Adsley, P.; Babo, M.; Chakma, R.; Delafosse, C.; Haefner, G.; Hauschild, K.; Ibrahim, F.; Ljungvall, J.; Lopez-Martens, A.; Lozeva, R.; Matea, I; Nemer, J.; Popovitch, Y.; Qi, L.; Tocabens, G.; Verney, D.] Univ Paris Saclay, IJC Lab, CNRS, IN2P3, Orsay, France, Email: jonathan.wilson@ijclab.in2p3.fr  
  Corporate Author Thesis  
  Publisher Nature Research Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000621583600006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4717  
Permanent link to this record
 

 
Author (down) Wieduwilt, P.; Paschen, B.; Schreeck, H.; Schwenker, B.; Soltau, J.; Ahlburg, P.; Dingfelder, J.; Frey, A.; Gomis, P.; Lutticke, F.; Marinas, C. url  doi
openurl 
  Title Performance of production modules of the Belle II pixel detector in a high-energy particle beam Type Journal Article
  Year 2021 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 991 Issue Pages 164978 - 15pp  
  Keywords DEPFET; DESY testbeam; Pixel detector; Belle II; Vertex detector  
  Abstract The Belle II experiment at the Super B factory SuperKEKB, an asymmetric e(+) e(-) collider located in Tsukuba, Japan, is tailored to perform precision B physics measurements. The centre of mass energy of the collisions is equal to the rest mass of the gamma (4S) resonance of m(gamma(4S)) = 10.58 GeV. A high vertex resolution is essential for measuring the decay vertices of B mesons. Typical momenta of the decay products are ranging from a few tens of MeV to a few GeV and multiple scattering has a significant impact on the vertex resolution. The VerteX Detector (VXD) for Belle II is therefore designed to have as little material as possible inside the acceptance region. Especially the innermost two layers, populated by the PiXel Detector (PXD), have to be ultra-thin. The PXD is based on DEpleted P-channel Field Effect Transistors (DEPFETs) with a thickness of only 75 μm. Spatial resolution and hit efficiency of production detector modules were studied in beam tests performed at the DESY test beam facility. The spatial resolution was investigated as a function of the incidence angle and improvements due to charge sharing are demonstrated. The measured module performance is compatible with the requirements for Belle II.  
  Address [Paschen, B.; Ahlburg, P.; Dingfelder, J.; Luetticke, F.] Univ Bonn, Phys Inst, Nussallee 12, D-53115 Bonn, Germany, Email: philipp.wieduwilt@phys.uni-goettingen.de;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000686054900010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4941  
Permanent link to this record
 

 
Author (down) Watanabe, H.; Watanabe, Y.X.; Hirayama, Y.; Andreyev, A.N.; Hashimoto, T.; Kondev, F.G.; Lane, G.J.; Litvinov, Y.A.; Liu, J.J.; Miyatake, H.; Moon, J.Y.; Morales, A.I.; Mukai, M.; Nishimura, S.; Niwase, T.; Rosenbusch, M.; Schury, P.; Shi, Y.; Wada, M.; Walker, P.M. doi  openurl
  Title Beta decay of the axially asymmetric ground state of Re-192 Type Journal Article
  Year 2021 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 814 Issue Pages 136088 - 6pp  
  Keywords Re-192; beta decay; Axial asymmetry; Shape transition  
  Abstract The beta decay of Re-192(75)117, which lies near the boundary between the regions of predicted prolate and oblate deformations, has been investigated using the KEK Isotope Separation System (KISS) in RIKEN Nishina Center. This is the first case in which a low-energy beam of rhenium isotope has been successfully extracted from an argon gas-stopping cell using a laser-ionization technique, following production via multi-nucleon transfer between heavy ions. The ground state of Re-192 has been assigned J(pi) = (0(-)) based on the observed beta feedings and deduced logf t values towards the 0(+) and 2(+) states in Os-192, which is known as a typical gamma-soft nucleus. The shape transition from axial symmetry to axial asymmetry in the Re isotopes is discussed from the viewpoint of single-particle structure using the nuclear Skyrme-Hartree-Fock model.  
  Address [Watanabe, H.] Beihang Univ, Sch Phys, Beijing 100191, Peoples R China, Email: hiroshi@ribf.riken.jp  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000621722300008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4747  
Permanent link to this record
 

 
Author (down) Watanabe, H. et al; Montaner-Piza, A. doi  openurl
  Title Impact of shell evolution on Gamow-Teller beta decay from a high-spin long-lived isomer in Ag-127 Type Journal Article
  Year 2021 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 823 Issue Pages 136766 - 6pp  
  Keywords Shell evolution; Gamow-Teller beta decay; Isomer; Ag-127; Radioactive isotope beam  
  Abstract The change of the shell structure in atomic nuclei, so-called “nuclear shell evolution”, occurs due to changes of major configurations through particle-hole excitations inside one nucleus, as well as due to variation of the number of constituent protons or neutrons. We have investigated how the shell evolution affects Gamow-Teller (GT) transitions that dominate the beta decay in the region below Sn-132 using the newly obtained experimental data on a long-lived isomer in Ag-127. The T-1/2 = 67.5(9) ms isomer has been identified with a spin and parity of (27/2(+)) at an excitation energy of 1942(-20)(+14) keV, and found to decay via an internal transition of an E3 character, which competes with the dominant beta-decay branches towards the high-spin states in Cd-127. The underlying mechanism of a strong GT transition from the Ag-127 isomer is discussed in terms of configuration-dependent optimization of the effective single-particle energies in the framework of a shell-model approach.  
  Address [Watanabe, H.] Beihang Univ, Sch Phys, Beijing 100191, Peoples R China, Email: hiroshi@ribf.riken.jp  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000719296400003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5041  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva