toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) ANTARES Collaboration (Albert, A. et al); Colomer, M.; Gozzini, R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Manczak, J.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Observation of the cosmic ray shadow of the Sun with the ANTARES neutrino telescope Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 102 Issue 12 Pages 122007 - 7pp  
  Keywords  
  Abstract The ANTARES detector is an undersea neutrino telescope in the Mediterranean Sea. The search for pointlike neutrino sources is one of the main goals of the ANTARES telescope, requiring a reliable method to evaluate the detector angular resolution and pointing accuracy. This work describes the study of the Sun “shadow” effect with the ANTARES detector. The shadow is the deficit in the atmospheric muon flux in the direction of the Sun caused by the absorption of the primary cosmic rays. This analysis is based on the data collected between 2008 and 2017 by the ANTARES telescope. The observed statistical significance of the Sun shadow detection is 3.7 sigma, with an estimated angular resolution of 0.59 degrees +/- 0.10 degrees for downward-going muons. The pointing accuracy is found to be consistent with the expectations and no evidence of systematic pointing shifts is observed.  
  Address [Albert, A.; Drouhin, D.; Huang, F.; Organokov, M.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Email: andrey.romanov@ge.infn.it;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000602850800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4663  
Permanent link to this record
 

 
Author (up) ANTARES Collaboration (Albert, A. et al); Colomer, M.; Gozzini, R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Manczak, J.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Search for dark matter towards the Galactic Centre with 11 years of ANTARES data Type Journal Article
  Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 805 Issue Pages 135439 - 6pp  
  Keywords Dark matter indirect detection; Neutrino telescope; Galactic Centre; ANTARES  
  Abstract Neutrino detectors participate in the indirect search for the fundamental constituents of dark matter (DM) in form of weakly interacting massive particles (WIMPs). In WIMP scenarios, candidate DM particles can pair-annihilate into Standard Model products, yielding considerable fluxes of high-energy neutrinos. A detector like ANTARES, located in the Northern Hemisphere, is able to perform a complementary search looking towards the Galactic Centre, where a high density of dark matter is thought to accumulate. Both this directional information and the spectral features of annihilating DM pairs are entered into an unbinned likelihood method to scan the data set in search for DM-like signals in ANTARES data. Results obtained upon unblinding 3170 days of data reconstructed with updated methods are presented, which provides a larger, and more accurate, data set than a previously published result using 2101 days. A non-observation of dark matter is converted into limits on the velocity-averaged cross section for WIMP pair annihilation.  
  Address [Albert, A.; Drouhin, D.; Ruiz, R. Gracia; Organokov, M.; Pradier, T.] Univ Strasbourg, CNRS, IPHC, UMR 7178, F-67000 Strasbourg, France, Email: srgozzini@km3net.de  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000541379800026 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4439  
Permanent link to this record
 

 
Author (up) Antusch, S.; Figueroa, D.G.; Marschall, K.; Torrenti, F. url  doi
openurl 
  Title Energy distribution and equation of state of the early Universe: Matching the end of inflation and the onset of radiation domination Type Journal Article
  Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 811 Issue Pages 135888 - 7pp  
  Keywords  
  Abstract We study the energy distribution and equation of state of the universe between the end of inflation and the onset of radiation domination (RD), considering observationally consistent single-field inflationary scenarios, with a potential 'flattening' at large field values, and a monomial shape V(phi) proportional to vertical bar phi vertical bar(p) around the origin. As a proxy for (p)reheating, we include a quadratic interaction g(2)phi X-2(2) between the inflaton phi and a light scalar 'daughter' field X, with g(2) > 0. We capture the non-perturbative and non-linear nature of the system dynamics with lattice simulations, obtaining that: i) the final energy transferred to X depends only on p, not on g(2); ii) the final transfer of energy is always negligible for 2 <= p < 4, and of order similar to 50% for p >= 4; iii) the system goes at late times to matter-domination for p = 2, and always to RD for p > 2. In the latter case we calculate the number of e-folds until RD, significantly reducing the uncertainty in the inflationary observables Tl-s and r.  
  Address [Antusch, Stefan; Marschall, Kenneth; Torrenti, Francisco] Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland, Email: f.torrenti@unibas.ch  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000612225400040 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4699  
Permanent link to this record
 

 
Author (up) Arbelaez, C.; Carcamo Hernandez, A.E.; Cepedello, R.; Kovalenko, S.; Schmidt, I. url  doi
openurl 
  Title Sequentially loop suppressed fermion masses from a single discrete symmetry Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue 6 Pages 043 - 24pp  
  Keywords Beyond Standard Model; Neutrino Physics; Quark Masses and SM Parameters  
  Abstract We propose a systematic and renormalizable sequential loop suppression mechanism to generate the hierarchy of the Standard Model fermion masses from one discrete symmetry. The discrete symmetry is sequentially softly broken in order to generate one-loop level masses for the bottom, charm, tau and muon leptons and two-loop level masses for the lightest Standard Model charged fermions. The tiny masses for the light active neutrinos are produced from radiative type-I seesaw mechanism, where the Dirac mass terms are effectively generated at two-loop level.  
  Address [Arbelaez, Carolina; Carcamo Hernandez, A. E.; Schmidt, Ivan] Univ Tecn Federico Santa Maria, Casilla 110-5, Valparaiso, Chile, Email: carolina.arbelaez@usm.cl;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000540500300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4430  
Permanent link to this record
 

 
Author (up) Arbelaez, C.; Cepedello, R.; Fonseca, R.M.; Hirsch, M. url  doi
openurl 
  Title (g-2) anomalies and neutrino mass Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 102 Issue 7 Pages 075005 - 14pp  
  Keywords  
  Abstract Motivated by the experimentally observed deviations from standard model predictions, we calculate the anomalous magnetic moments a(alpha) = (g – 2)(alpha) for a = e, μin a neutrino mass model originally proposed by Babu, Nandi, and Tavartkiladze (BNT). We discuss two variants of the model: the original model, and a minimally extended version with an additional hypercharge-zero triplet scalar. While the original BNT model can explain a(mu), only the variant with the triplet scalar can explain both experimental anomalies. The heavy fermions of the model can be produced at the high-luminosity LHC, and in the part of parameter space where the model explains the experimental anomalies it predicts certain specific decay patterns for the exotic fermions.  
  Address [Arbelaez, Carolina] Univ Tecn Federico Santa Maria, Casilla 110-5, Valparaiso, Chile, Email: carolina.arbelaez@usm.cl;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000576053400004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4557  
Permanent link to this record
 

 
Author (up) Arbelaez, C.; Cottin, G.; Helo, J.C.; Hirsch, M. url  doi
openurl 
  Title Long-lived charged particles and multilepton signatures from neutrino mass models Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 101 Issue 9 Pages 095033 - 13pp  
  Keywords  
  Abstract Lepton number violation (LNV) is usually searched for by the LHC collaborations using the same-sign dilepton plus jet signature. In this paper, we discuss multilepton signals of LNV that can arise with experimentally interesting rates in certain loop models of neutrino mass generation. Interestingly, in such models, the observed smallness of the active neutrino masses, together with the high multiplicity of the final states, leads in large parts of the viable parameter space of such models to the prediction of long-lived charged particles, which leave highly ionizing tracks in the detectors. We focus on one particular one-loop neutrino mass model in this class and discuss its LHC phenomenology in some detail.  
  Address [Arbelaez, Carolina] Univ Tecn Federico Santa Maria, Av Espana 1680,Casilla 110-5, Valparaiso 2340000, Chile, Email: carolina.arbelaez@usm.cl;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000535451000011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4403  
Permanent link to this record
 

 
Author (up) Archidiacono, M.; Gariazzo, S.; Giunti, C.; Hannestad, S.; Tram, T. url  doi
openurl 
  Title Sterile neutrino self-interactions: H-0 tension and short-baseline anomalies Type Journal Article
  Year 2020 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 12 Issue 12 Pages 029 - 20pp  
  Keywords cosmological neutrinos; cosmological parameters from CMBR; particle physics – cosmology connection; physics of the early universe  
  Abstract Sterile neutrinos with a mass in the eV range have been invoked as a possible explanation of a variety of short baseline (SBL) neutrino oscillation anomalies. However, if one considers neutrino oscillations between active and sterile neutrinos, such neutrinos would have been fully thermalised in the early universe, and would be therefore in strong conflict with cosmological bounds. In this study we first update cosmological bounds on the mass and energy density of eV-scale sterile neutrinos. We then perform an updated study of a previously proposed model in which the sterile neutrino couples to a new light pseudoscalar degree of freedom. Consistently with previous analyses, we find that the model provides a good fit to all cosmological data and allows the high value of H-0 measured in the local universe to be consistent with measurements of the cosmic microwave background. However, new high l polarisation data constrain the sterile neutrino mass to be less than approximately 1 eV in this scenario. Finally, we combine the cosmological bounds on the pseudoscalar model with a Bayesian inference analysis of SBL data and conclude that only a sterile mass in narrow ranges around 1 eV remains consistent with both cosmology and SBL data.  
  Address [Archidiacono, Maria] Univ Milan, Via G Celoria 16, I-20133 Milan, Italy, Email: maria.archidiacono@unimi.it;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000609105900015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4688  
Permanent link to this record
 

 
Author (up) Ares, F.; Esteve, J.G.; Falceto, F.; Uson, A. url  doi
openurl 
  Title Complex behavior of the density in composite quantum systems Type Journal Article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys. Rev. B  
  Volume 102 Issue 16 Pages 165121 - 13pp  
  Keywords  
  Abstract In this paper, we study how the probability of presence of a particle is distributed between the two parts of a composite fermionic system. We uncover that the difference of probability depends on the energy in a striking way and show the pattern of this distribution. We discuss the main features of the latter and explain analytically those that we understand. In particular, we prove that it is a nonperturbative property and we find out a large/small coupling constant duality. We also find and study features that may connect our problem with certain aspects of nonlinear classical dynamics, such as the existence of resonances and sensitive dependence on the state of the system. We show that the latter has, indeed, a similar origin than in classical mechanics: the appearance of small denominators in the perturbative series. Inspired by the proof of the Kolmogorov-Arnold-Moser theorem, we are able to deal with this problem by introducing a cutoff in energies that eliminates these small denominators. We also formulate some conjectures that we are not able to prove at present but can be supported by numerical experiments.  
  Address [Ares, Filiberto] Univ Fed Rio Grande do Norte, Int Inst Phys, BR-59078970 Natal, RN, Brazil, Email: fares@iip.ufrn.br;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000576889500004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4562  
Permanent link to this record
 

 
Author (up) Arguelles, C.A.; Coloma, P.; Hernandez, P.; Muñoz, V. url  doi
openurl 
  Title Searches for atmospheric long-lived particles Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages 190 - 34pp  
  Keywords Beyond Standard Model; Neutrino Physics; Solar and Atmospheric Neutrinos  
  Abstract Long-lived particles are predicted in extensions of the Standard Model that involve relatively light but very weakly interacting sectors. In this paper we consider the possibility that some of these particles are produced in atmospheric cosmic ray showers, and their decay intercepted by neutrino detectors such as IceCube or Super-Kamiokande. We present the methodology and evaluate the sensitivity of these searches in various scenarios, including extensions with heavy neutral leptons in models of massive neutrinos, models with an extra U(1) gauge symmetry, and a combination of both in a U(1)(B-L) model. Our results are shown as a function of the production rate and the lifetime of the corresponding long-lived particles.  
  Address [Arguelles, C.] MIT, Dept Phys, Cambridge, MA 02139 USA, Email: caad@mit.edu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000518622800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4323  
Permanent link to this record
 

 
Author (up) Aristizabal Sierra, D.; De Romeri, V.; Flores, L.J.; Papoulias, D.K. url  doi
openurl 
  Title Light vector mediators facing XENON1T data Type Journal Article
  Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 809 Issue Pages 135681 - 5pp  
  Keywords  
  Abstract Recently the XENON1T collaboration has released new results on searches for new physics in low-energy electronic recoils. The data shows an excess over background in the low-energy tail, particularly pronounced at about 2-3 keV. With an exposure of 0.65 tonne-year, large detection efficiency and energy resolution, the detector is sensitive as well to solar neutrino backgrounds, with the most prominent contribution given by pp neutrinos. We investigate whether such signal can be explained in terms of new neutrino interactions with leptons mediated by a light vector particle. We find that the excess is consistent with this interpretation for vector masses below less than or similar to 0.1 MeV. The region of parameter space probed by the XENON1T data is competitive with constraints from laboratory experiments, in particular GEMMA, Borexino and TEXONO. However we point out a severe tension with astrophysical bounds and cosmological observations.  
  Address [Sierra, D. Aristizabal] Univ Tecn Federico Santa Maria, Dept Fis, Casilla 110-5,Avda Espana 1680, Valparaiso, Chile, Email: daristizabal@ulg.ac.be;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000581871500003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4602  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva