toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Akindinov, V. et al; Colomer, M.; Gozzini, S.R.; Hernandez-Rey, J.J.; Khan Chowdhury, N.R.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Letter of interest for a neutrino beam from Protvino to KM3NeT/ORCA Type Journal Article
  Year 2019 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 79 Issue 9 Pages 758 - 14pp  
  Keywords  
  Abstract The Protvino accelerator facility located in the Moscow region, Russia, is in a good position to offer a rich experimental research program in the field of neutrino physics. Of particular interest is the possibility to direct a neutrino beam from Protvino towards the KM3NeT/ORCA detector, which is currently under construction in the Mediterranean Sea 40 km offshore Toulon, France. This proposal is known as P2O. Thanks to its baseline of 2595 km, this experiment would yield an unparalleled sensitivity to matter effects in the Earth, allowing for the determination of the neutrino mass ordering with a high level of certainty after only a few years of running at a modest beam intensity of sensitivity to the leptonic CP-violating Dirac phase can be achieved. A second stage of the experiment, comprising a further intensity upgrade of the accelerator complex and a densified version of the ORCA detector (Super-ORCA), would allow for up to a 6 sigma\documentclass[12pt] resolution on the CP phase after 10 years of running with a 450 kW beam, competitive with other planned experiments. The initial composition and energy spectrum of the neutrino beam would need to be monitored by a near detector, to be constructed several hundred meters downstream from the proton beam target. The same neutrino beam and near detector set-up would also allow for neutrino-nucleus cross section measurements to be performed. A short-baseline sterile neutrino search experiment would also be possible.  
  Address [Akindinov, V; Kuzmin, K. S.; Zaborov, D.] NRC Kurchatov Inst, AI Alikhanov Inst Theoret & Expt Phys, Moscow, Russia, Email: zaborov@itep.ru  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000485982300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4144  
Permanent link to this record
 

 
Author (up) Al Kharusi, S. et al; Colomer, M. url  doi
openurl 
  Title SNEWS 2.0: a next-generation supernova early warning system for multi-messenger astronomy Type Journal Article
  Year 2021 Publication New Journal of Physics Abbreviated Journal New J. Phys.  
  Volume 23 Issue 3 Pages 031201 - 34pp  
  Keywords supernova neutrinos; multi-messenger astronomy; particle astrophysics  
  Abstract The next core-collapse supernova in the Milky Way or its satellites will represent a once-in-a-generation opportunity to obtain detailed information about the explosion of a star and provide significant scientific insight for a variety of fields because of the extreme conditions found within. Supernovae in our galaxy are not only rare on a human timescale but also happen at unscheduled times, so it is crucial to be ready and use all available instruments to capture all possible information from the event. The first indication of a potential stellar explosion will be the arrival of a bright burst of neutrinos. Its observation by multiple detectors worldwide can provide an early warning for the subsequent electromagnetic fireworks, as well as signal to other detectors with significant backgrounds so they can store their recent data. The supernova early warning system (SNEWS) has been operating as a simple coincidence between neutrino experiments in automated mode since 2005. In the current era of multi-messenger astronomy there are new opportunities for SNEWS to optimize sensitivity to science from the next galactic supernova beyond the simple early alert. This document is the product of a workshop in June 2019 towards design of SNEWS 2.0, an upgraded SNEWS with enhanced capabilities exploiting the unique advantages of prompt neutrino detection to maximize the science gained from such a valuable event.  
  Address [Al Kharusi, S.; Brunner, T.; Haggard, D.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada, Email: ahabig@d.umn.edu  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000629947000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4756  
Permanent link to this record
 

 
Author (up) Albaladejo, M. url  doi
openurl 
  Title T-cc(+) coupled channel analysis and predictions Type Journal Article
  Year 2022 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 829 Issue Pages 137052 - 13pp  
  Keywords  
  Abstract A coupled channel analysis of the D*D-+(0) and D*D-0(+) system is performed to study the doubly charmed T-cc(+) state recently discovered by the LHCb collaboration. We use a simple model for the scattering amplitude and production mechanism that allows us to describe well the experimental spectrum, and obtain the T-cc(+) pole in the coupled channel T-matrix. We find that this bound state has a large molecular component. The isospin (I = 0 or I = 1) of the state cannot be inferred from the (DD0)-D-0 pi(+) spectrum alone, although there is some experimental evidence that points to the I = 0 interpretation. Therefore, we use the same formalism to predict other DD pi spectra. In the case the T-cc(+) has I = 1, we also predict the location of the other two members (T-cc(+) and T-cc(0)) of the triplet. Finally, using Heavy-Quark Spin Symmetry, we predict the location of possible heavier D*D* (I = 0 or I= 1) partners.  
  Address [Albaladejo, M.] Univ Valencia, Inst Invest Paterna, Ctr Mixto CSIC, Inst Fis Corpuscular IFIC, Aptd 22085, E-46071 Valencia, Spain, Email: Miguel.Albaladejo@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000821533700009 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5288  
Permanent link to this record
 

 
Author (up) Albaladejo, M.; Bibrzycki, L.; Dawid, S.M.; Fernandez-Ramirez, C.; Gonzalez-Solis, S.; Hiller Blin, A.N.; Jackura, A.W.; Mathieu, V.; Mikhasenko, M.; Make, V.I.; Passemar, E.; Pilloni, A.; Rodas, A.; Silva-Castro, J.A.; Smith, W.A.; Szczepaniak, A.P.; Winney, D. url  doi
openurl 
  Title Novel approaches in hadron spectroscopy Type Journal Article
  Year 2022 Publication Progress in Particle and Nuclear Physics Abbreviated Journal Prog. Part. Nucl. Phys.  
  Volume 127 Issue Pages 103981 - 75pp  
  Keywords Hadron spectroscopy; Exotic hadrons; Three-body scattering; Resonance production  
  Abstract The last two decades have witnessed the discovery of a myriad of new and unexpected hadrons. The future holds more surprises for us, thanks to new-generation experiments. Understanding the signals and determining the properties of the states requires a parallel theoretical effort. To make full use of available and forthcoming data, a careful amplitude modeling is required, together with a sound treatment of the statistical uncertainties, and a systematic survey of the model dependencies. We review the contributions made by the Joint Physics Analysis Center to the field of hadron spectroscopy.  
  Address [Albaladejo, Miguel; Blin, Astrid N. Hiller; Jackura, Andrew W.; Mokeev, Victor, I; Passemar, Emilie; Rodas, Arkaitz; Szczepaniak, Adam P.] Thomas Jefferson Natl Accelerator Facil, Theory Ctr & Phys Div, Newport News, VA 23606 USA, Email: alessandro.pilloni@unime.it  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0146-6410 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000883770300003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5422  
Permanent link to this record
 

 
Author (up) Albaladejo, M.; Gonzàlez-Solís, S.; Bibrzycki, L.; Fernández-Ramírez, C.; Hammoud, N.; Mathieu, V.; Mikhasenko, M.; Montaña, G.; Perry, R.J.; Pilloni, A.; Rodas, A.; Smith, W.A.; Szczepaniak, A.; Winney, D. url  doi
openurl 
  Title Khuri-Treiman analysis of J/Psi -> pi+ pi-pi0 Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 108 Issue 1 Pages 014035 - 11pp  
  Keywords  
  Abstract We study the decay J=& psi; & RARR; & pi; thorn & pi;-& pi;0 within the framework of the Khuri-Treiman equations. We find that the BESIII experimental dipion mass distribution in the & rho;o770 thorn -region is well reproduced with a once-subtracted P-wave amplitude. Furthermore, we show that F-wave contributions to the amplitude improve the description of the data in the & pi;& pi; mass region around 1.5 GeV. We also present predictions for the J=& psi; & RARR; & pi;0 & gamma;* transition form factor.  
  Address [Albaladejo, M.] Univ Valencia, Ctr Mixto CSIC, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain, Email: Miguel.Albaladejo@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001056564000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5713  
Permanent link to this record
 

 
Author (up) Albaladejo, M.; Nieves, J. url  doi
openurl 
  Title Compositeness of S-wave weakly-bound states from next-to-leading order Weinberg's relations Type Journal Article
  Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 82 Issue 8 Pages 724 - 12pp  
  Keywords  
  Abstract We discuss a model-independent estimator of the likelihood of the compositeness of a shallow S-wave bound or virtual state. The approach is based on an extension of Weinberg's relations in Weinberg (Phys Rev 137:B672, 1965) and it relies only on the proximity of the energy of the state to the two-hadron threshold to which it significantly couples. The scheme only makes use of the experimental scattering length and the effective range low energy parameters, and it is shown to be fully consistent for predominantly molecular hadrons. As explicit applications, we analyse the case of the deuteron, the S-1(0) nucleon virtual state and the exotic D-so(*)(2317)(+/-) , and find strong support to the molecular interpretation in all cases. Results are less conclusive for the D* (s0)(2317)+/-, since the binding energy of this state would be significantly higher than that of the deuteron, and the approach employed here is at the limit of its applicability. We also qualitatively address the case of the recently discovered T + cc state, within the isospin limit to avoid the complexity of the very close thresholds (DD)-D-0*+ and D + D*(0), which could mask the ingredients of the approach proposed in this work.  
  Address [Albaladejo, M.; Nieves, J.] Inst Invest Paterna, Inst Fis Corpuscular, Ctr Mixto CSIC UV, C Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: Miguel.Albaladejo@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000842040900001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5337  
Permanent link to this record
 

 
Author (up) Albaladejo, M.; Nieves, J.; Ruiz Arriola, E. url  doi
openurl 
  Title Femtoscopic signatures of the lightest S-wave scalar open-charm mesons Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 108 Issue Pages 014020 - 7pp  
  Keywords  
  Abstract We predict femtoscopy correlation functions for S-wave D(s)ϕ pairs of lightest pseudoscalar open-charm mesons and Goldstone bosons from next-to-leading-order unitarized heavy-meson chiral perturbation theory amplitudes. The effect of the two-state structure around 2300 MeV can be clearly seen in the (S,I)=(0,1/2) Dπ, Dη, and Ds¯K correlation functions, while in the scalar-strange (1,0) sector, the D∗s0(2317)± state lying below the DK threshold produces a depletion of the correlation function near threshold. These exotic states owe their existence to the nonperturbative dynamics of Goldstone-boson scattering off D(s). The predicted correlation functions could be experimentally measured and will shed light into the hadron spectrum, confirming that it should be viewed as more than a collection of quark model states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 6089  
Permanent link to this record
 

 
Author (up) Albaladejo, M.; Nieves, J.; Tolos, L. url  doi
openurl 
  Title D(D)over-bar* scattering and chi(c1) (3872) in nuclear matter Type Journal Article
  Year 2021 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 104 Issue 3 Pages 035203 - 20pp  
  Keywords  
  Abstract We study the behavior of the chi(c1) (3872), also known as X(3872), in dense nuclear matter. We begin from a picture in vacuum of the X(3872) as a purely molecular (D (D) over bar*-c.c.) state, generated as a bound state from a heavy-quark symmetry leading-order interaction between the charmed mesons, and analyze the D (D) over bar* scattering T matrix (T-D (D) over bar*) inside of the medium. Next, we consider also mixed-molecular scenarios and, in all cases, we determine the corresponding X(3872) spectral function and the D (D) over bar* amplitude, with the mesons embedded in the dense environment. We find important nuclear corrections for T-D (D) over bar* and the pole position of the resonance, and discuss the dependence of these results on the D (D) over bar* molecular component in the X(3872) wave function. These predictions could be tested in the finite-density regime that can be accessed in the future CBM and PANDA experiments at the Facility for Antiproton and Ion Research (FAIR).  
  Address [Albaladejo, M.] Thomas Jefferson Natl Accelerator Facil, Theory Ctr, Newport News, VA 23606 USA  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000704558000004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4999  
Permanent link to this record
 

 
Author (up) Albandea, D.; Del Debbio, L.; Hernandez, P.; Kenway, R.; Marsh Rossney, J.; Ramos, A. url  doi
openurl 
  Title Learning trivializing flows Type Journal Article
  Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 83 Issue 7 Pages 676 - 14pp  
  Keywords  
  Abstract The recent introduction of machine learning techniques, especially normalizing flows, for the sampling of lattice gauge theories has shed some hope on improving the sampling efficiency of the traditional hybrid Monte Carlo (HMC) algorithm. In this work we study a modified HMC algorithm that draws on the seminal work on trivializing flows by L & uuml;scher. Autocorrelations are reduced by sampling from a simpler action that is related to the original action by an invertible mapping realised through Normalizing Flows models with a minimal set of training parameters. We test the algorithm in a f(4) theory in 2D where we observe reduced autocorrelation times compared with HMC, and demonstrate that the training can be done at small unphysical volumes and used in physical conditions. We also study the scaling of the algorithm towards the continuum limit under various assumptions on the network architecture.  
  Address [Albandea, D.; Hernandez, P.; Ramos, A.] Edificio Inst Invest, IFIC CSIC UVEG, Apt 22085, Valencia 46071, Spain, Email: david.albandea@uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001066712500003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5698  
Permanent link to this record
 

 
Author (up) Albandea, D.; Hernandez, P.; Ramos, A.; Romero-Lopez, F. url  doi
openurl 
  Title Topological sampling through windings Type Journal Article
  Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 81 Issue 10 Pages 873 - 12pp  
  Keywords  
  Abstract We propose a modification of the Hybrid Monte Carlo (HMC) algorithm that overcomes the topological freezing of a two-dimensional U(1) gauge theory with and without fermion content. This algorithm includes reversible jumps between topological sectors – winding steps – combined with standard HMC steps. The full algorithm is referred to as winding HMC (wHMC), and it shows an improved behaviour of the autocorrelation time towards the continuum limit. We find excellent agreement between the wHMC estimates of the plaquette and topological susceptibility and the analytical predictions in the U(1) pure gauge theory, which are known even at finite beta. We also study the expectation values in fixed topological sectors using both HMC and wHMC, with and without fermions. Even when topology is frozen in HMC – leading to significant deviations in topological as well as non-topological quantities – the two algorithms agree on the fixed-topology averages. Finally, we briefly compare the wHMC algorithm results to those obtained with master-field simulations of size L similar to 8 x 10(3).  
  Address [Albandea, David; Hernandez, Pilar; Ramos, Alberto; Romero-Lopez, Fernando] UVEG, CSIC, IFIC, Edificio Inst Invest,Apt 22085, Valencia 46071, Spain, Email: David.Albandea@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000703880600001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4979  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva