toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Berenguer, A.; Coves, A.; Gimeno, B.; Bronchalo, E.; Boria, V.E. doi  openurl
  Title Experimental Study of the Multipactor Effect in a Partially Dielectric-Loaded Rectangular Waveguide Type Journal Article
  Year 2019 Publication IEEE Microwave and Wireless Components Letters Abbreviated Journal IEEE Microw. Wirel. Compon. Lett.  
  Volume 29 Issue 9 Pages 595-597  
  Keywords Dielectric; multipactor effect; rectangular waveguide; RF breakdown; Secondary Electron Yield (SEY); waveguide transformer  
  Abstract This letter presents the experimental study of the multipactor threshold in a partially dielectric-loaded rectangular waveguide, whose results validate a multipactor model recently developed by the authors, which includes the charge distribution appearing on the dielectric surface during the multipactor discharge. First, the variation of the multipactor RF voltage threshold has been theoretically analyzed in different waveguide configurations: in an empty waveguide, and also in the cases of a one-sided and two-sided dielectric-loaded waveguides. To reach this aim, an in-house Monte Carlo simulation tool has been developed. The Secondary Electron Yield (SEY) of the metallic and dielectric materials used in the numerical simulations have been measured experimentally. Finally, an aluminum WR-75 symmetric E-plane rectangular waveguide transformer has been designed and fabricated, in which several multipaction tests have been carried out to validate the in-house software tool, demonstrating an excellent agreement between the simulation results and the experimental data.  
  Address [Berenguer, Andres; Coves, Angela; Bronchalo, Enrique] Univ Miguel Hernandez Elche, Dept Commun Engn, Elche 03202, Spain, Email: angela.coves@umh.es  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1531-1309 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000489754400009 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4170  
Permanent link to this record
 

 
Author (up) Gonzalez-Iglesias, D.; Esperante, D.; Gimeno, B.; Blanch, C.; Fuster-Martinez, N.; Martinez-Reviriego, P.; Martin-Luna, P.; Fuster, J.; Alesini, D. doi  openurl
  Title Analysis of the Multipactor Effect in an RF Electron Gun Photoinjector Type Journal Article
  Year 2023 Publication IEEE Transactions on Electron Devices Abbreviated Journal IEEE Trans. Electron Devices  
  Volume 70 Issue 1 Pages 288-295  
  Keywords Magnetic tunneling; Multipactor effect; photoinjector; RF breakdown; RF gun  
  Abstract The objective of this work is the evaluation of the risk of suffering a multipactor discharge within an RF electron gun photoinjector. Photoinjectors are a type of source for intense electron beams, which are the main electron source for synchrotron light sources, such as free-electron lasers. The analyzed device consists of 1.6 cells and it has been designed to operate at the S-band. Besides, around the RF gun there is an emittance compensation solenoid, whose magnetic field prevents the growth of the electron beam emittance, and thus the degradation of the properties of the beam. The multipactor analysis is based on a set of numerical simulations by tracking the trajectories of the electron cloud in the cells of the device. To reach this aim, an in-house multipactor code was developed. Specifically, two different cases were explored: with the emittance compensation solenoid assumed to be off and with the emittance compensation solenoid in operation. For both the cases, multipactor simulations were carried out exploring different RF electric field amplitudes. Moreover, for a better understanding of the multipactor phenomenon, the resonant trajectories of the electrons and the growth rate of the electrons population are investigated.  
  Address [Gonzalez-Iglesias, D.; Esperante, D.; Gimeno, B.; Blanch, C.; Fuster-Martinez, N.; Martinez-Reviriego, P.; Martin-Luna, P.; Fuster, J.] Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, Paterna 46980, Spain, Email: Daniel.Gonzalez-Iglesias@uv.es  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9383 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000890813600001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5427  
Permanent link to this record
 

 
Author (up) Gonzalez-Iglesias, D.; Gimeno, B.; Esperante, D.; Martinez-Reviriego, P.; Martin-Luna, P.; Fuster-Martinez, N.; Blanch, C.; Martinez, E.; Menendez, A.; Fuster, J.; Grudiev, A. url  doi
openurl 
  Title Non-resonant ultra-fast multipactor regime in dielectric-assist accelerating structures Type Journal Article
  Year 2024 Publication Results in Physics Abbreviated Journal Results Phys.  
  Volume 56 Issue Pages 107245 - 12pp  
  Keywords Multipactor; Dielectric accelerating structures; RF particle accelerators; Plasma discharge  
  Abstract The objective of this work is the evaluation of the risk of suffering a multipactor discharge in an S-band dielectric-assist accelerating (DAA) structure for a compact low-energy linear particle accelerator dedicated to hadrontherapy treatments. A DAA structure consists of ultra-low loss dielectric cylinders and disks with irises which are periodically arranged in a metallic enclosure, with the advantage of having an extremely high quality factor and very high shunt impedance at room temperature, and it is therefore proposed as a potential alternative to conventional disk-loaded copper structures. However, it has been observed that these structures suffer from multipactor discharges. In fact, multipactor is one of the main problems of these devices, as it limits the maximum accelerating gradient. Because of this, the analysis of multipactor risk in the early design steps of DAA cavities is crucial to ensure the correct performance of the device after fabrication. In this paper, we present a comprehensive and detailed study of multipactor in our DAA design through numerical simulations performed with an in-house developed code based on the Monte-Carlo method. The phenomenology of the multipactor (resonant electron trajectories, electron flight time between impacts, etc.) is described in detail for different values of the accelerating gradient. It has been found that in these structures an ultra-fast non-resonant multipactor appears, which is different from the types of multipactor theoretically studied in the scientific literature. In addition, the effect of several low electron emission coatings on the multipactor threshold is investigated. Furthermore, a novel design based on the modification of the DAA cell geometry for multipactor mitigation is introduced, which shows a significant increase in the accelerating gradient handling capabilities of our prototype.  
  Address [Gonzalez-Iglesias, Daniel; Gimeno, Benito; Esperante, Daniel; Martinez-Reviriego, Pablo; Martin-Luna, Pablo; Fuster-Martinez, Nuria; Blanch, Cesar; Martinez, Eduardo; Menendez, Abraham; Fuster, Juan] CSIC UV, Inst Fis Corpuscular IF, c Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: daniel.gonzalez-iglesias@uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-3797 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001133850600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5866  
Permanent link to this record
 

 
Author (up) Monerris-Belda, O.; Cervera Marin, R.; Rodriguez Jodar, M.; Diaz-Caballero, E.; Alcaide Guillen, C.; Petit, J.; Boria, V.E.; Gimeno, B.; Raboso, D. doi  openurl
  Title High Power RF Discharge Detection Technique Based on the In-Phase and Quadrature Signals Type Journal Article
  Year 2021 Publication IEEE Transactions on Microwave Theory and Techniques Abbreviated Journal IEEE Trans. Microw. Theory Tech.  
  Volume 69 Issue 12 Pages 5429-5438  
  Keywords Radio frequency; Microwave theory and techniques; Electric breakdown; Discharges (electric); Noise measurement; Sensitivity; RF signals; Corona; microwave devices; multipactor; radio frequency (RF) breakdown; RF high power  
  Abstract High power radio frequency (RF) breakdown testing is a subject of great relevance in the space industry, due to the increasing need of higher transmission power and smaller devices. This work presents a novel RF breakdown detection system, which monitors the same parameters as the microwave nulling system but with several advantages. Where microwave nulling-a de facto standard in RF breakdown testing-is narrowband and requires continuous tuning to keep its sensitivity, the proposed technique is broadband and maintains its performance for any RF signal. On top of that, defining the detection threshold is cumbersome due to the lack of an international standardized criterion. Small responses may appear in the detection system during the test and, sometimes, it is not possible to determine if these are an actual RF breakdown or random noise. This new detection system uses a larger analysis bandwidth, thus reducing the cases in which a small response is difficult to be classified. The proposed detection method represents a major step forward in high power testing as it runs without human intervention, warning the operator or decreasing the RF power automatically much faster than any human operator.  
  Address [Monerris-Belda, Oscar; Cervera Marin, Raul; Rodriguez Jodar, Miguel; Petit, John] Val Space Consortium, Valencia 46022, Spain, Email: oscar.monerris@val-space.com  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9480 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000725804500027 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5042  
Permanent link to this record
 

 
Author (up) Vague, J.; Melgarejo, J.C.; Boria, V.E.; Guglielmi, M.; Moreno, R.; Reglero, M.; Mata, R.; Montero, I.; Gonzalez-Iglesias, D.; Gimeno, B.; Gomez, A.; Vegas, A.; Raboso, D. doi  openurl
  Title Experimental Validation of Multipactor Effect for Ferrite Materials Used in L- and S-Band Nonreciprocal Microwave Components Type Journal Article
  Year 2019 Publication IEEE Transactions on Microwave Theory and Techniques Abbreviated Journal IEEE Trans. Microw. Theory Tech.  
  Volume 67 Issue 6 Pages 2151-2161  
  Keywords Ferrites; ferromagnetic resonance; gadolinium-aluminum garnet; Holmium garnet; multipactor; space applications; wideband nonreciprocal devices  
  Abstract This paper reports on the experimental measurement of power threshold levels for the multipactor effect between samples of ferrite material typically used in the practical implementation of L-and S-band circulators and isolators. For this purposes, a new family of wideband, nonreciprocal rectangular waveguide structures loaded with ferrites has been designed with a full-wave electromagnetic simulation tool. The design also includes the required magnetostatic field biasing circuits. The multipactor breakdown power levels have also been predicted with an accurate electron tracking code using measured values for the secondary electron yield (SEY) coefficient. The measured results agree well with simulations, thereby fully validating the experimental campaign.  
  Address [Vague, Joaquin; Carlos Melgarejo, Juan; Boria, Vicente E.; Guglielmi, Marco; Reglero, Marta] Univ Politecn Valencia, iTEAM, Dept Comunicac, E-46022 Valencia, Spain, Email: jvague@dcom.upv.es;  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9480 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000470969100006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4056  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva