toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Aguilar, A.C.; Ferreira, M.N.; Papavassiliou, J. url  doi
openurl 
  Title Novel sum rules for the three-point sector of QCD Type Journal Article
  Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 80 Issue 9 Pages 887 - 18pp  
  Keywords  
  Abstract For special kinematic configurations involving a single momentum scale, certain standard relations, originating from the Slavnov-Taylor identities of the theory, may be interpreted as ordinary differential equations for the “kinetic term” of the gluon propagator. The exact solutions of these equations exhibit poles at the origin, which are incompatible with the physical answer, known to diverge only logarithmically; their elimination hinges on the validity of two integral conditions that we denominate “asymmetric” and “symmetric” sum rules, depending on the kinematics employed in their derivation. The corresponding integrands contain components of the three-gluon vertex and the ghost-gluon kernel, whose dynamics are constrained when the sum rules are imposed. For the numerical treatment we single out the asymmetric sum rule, given that its support stems predominantly from low and intermediate energy regimes of the defining integral, which are physically more interesting. Adopting a combined approach based on Schwinger-Dyson equations and lattice simulations, we demonstrate how the sum rule clearly favors the suppression of an effective form factor entering in the definition of its kernel. The results of the present work offer an additional vantage point into the rich and complex structure of the three-point sector of QCD.  
  Address [Aguilar, A. C.; Ferreira, M. N.] Univ Estadual Campinas, Inst Phys Gleb Wataghin, UNICAMP, BR-13083859 Campinas, SP, Brazil, Email: aguilar@ifi.unicamp.br  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000576141200005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4559  
Permanent link to this record
 

 
Author (up) Aguilar, A.C.; Ferreira, M.N.; Papavassiliou, J.; Santos, L.R. url  doi
openurl 
  Title Planar degeneracy of the three-gluon vertex Type Journal Article
  Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 83 Issue 6 Pages 549 - 20pp  
  Keywords  
  Abstract We present a detailed exploration of certain outstanding features of the transversely-projected three-gluon vertex, using the corresponding Schwinger-Dyson equation in conjunction with key results obtained from quenched lattice simulations. The main goal of this study is the scrutiny of the approximate property denominated “planar degeneracy”, unveiled when the Bose symmetry of the vertex is properly exploited. The planar degeneracy leads to a particularly simple parametrization of the vertex, reducing its kinematic dependence to essentially a single variable. Our analysis, carried out in the absence of dynamical quarks, reveals that the planar degeneracy is particularly accurate for the description of the form factor associated with the classical tensor, for a wide array of arbitrary kinematic configurations. Instead, the remaining three form factors display considerable violations of this property. In addition, and in close connection with the previous point, we demonstrate the numerical dominance of the classical form factor over all others, except in the vicinity of the soft-gluon kinematics. The final upshot of these considerations is the emergence of a very compact description for the three-gluon vertex in general kinematics, which may simplify significantly nonperturbative applications involving this vertex.  
  Address [Aguilar, A. C.; Santos, L. R.] Univ Campinas UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil, Email: aguilar@ifi.unicamp.br  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001117709800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5847  
Permanent link to this record
 

 
Author (up) Aguilar, A.C.; Ibañez, D.; Mathieu, V.; Papavassiliou, J. url  doi
openurl 
  Title Massless bound-state excitations and the Schwinger mechanism in QCD Type Journal Article
  Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 85 Issue 1 Pages 014018 - 21pp  
  Keywords  
  Abstract The gauge-invariant generation of an effective gluon mass proceeds through the well-known Schwinger mechanism, whose key dynamical ingredient is the nonperturbative formation of longitudinally coupled massless bound-state excitations. These excitations introduce poles in the vertices of the theory, in such a way as to maintain the Slavnov-Taylor identities intact in the presence of massive gluon propagators. In the present work we first focus on the modifications induced to the nonperturbative three-gluon vertex by the inclusion of massless two-gluon bound states into the kernels appearing in its skeleton expansion. Certain general relations between the basic building blocks of these bound states and the gluon mass are then obtained from the Slavnov-Taylor identities and the Schwinger-Dyson equation governing the gluon propagator. The homogeneous Bethe-Salpeter equation determining the wave function of the aforementioned bound state is then derived, under certain simplifying assumptions. It is then shown, through a detailed analytical and numerical study, that this equation admits nontrivial solutions, indicating that the QCD dynamics support indeed the formation of such massless bound states. These solutions are subsequently used, in conjunction with the aforementioned relations, to determine the momentumdependence of the dynamical gluon mass. Finally, further possibilities and open questions are briefly discussed.  
  Address [Aguilar, A. C.] Fed Univ ABC, CCNH, BR-09210170 Santo Andre, Brazil  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000299293600005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 881  
Permanent link to this record
 

 
Author (up) Aguilar, A.C.; Ibañez, D.; Papavassiliou, J. url  doi
openurl 
  Title Ghost propagator and ghost-gluon vertex from Schwinger-Dyson equations Type Journal Article
  Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 87 Issue 11 Pages 114020 - 14pp  
  Keywords  
  Abstract We study an approximate version of the Schwinger-Dyson equation that controls the nonperturbative behavior of the ghost-gluon vertex in the Landau gauge. In particular, we focus on the form factor that enters in the dynamical equation for the ghost dressing function, in the same gauge, and derive its integral equation, in the “one-loop dressed” approximation. We consider two special kinematic configurations, which simplify the momentum dependence of the unknown quantity; in particular, we study the soft gluon case and the well-known Taylor limit. When coupled with the Schwinger-Dyson equation of the ghost dressing function, the contribution of this form factor provides considerable support to the relevant integral kernel. As a consequence, the solution of this coupled system of integral equations furnishes a ghost dressing function that reproduces the standard lattice results rather accurately, without the need to artificially increase the value of the gauge coupling.  
  Address [Aguilar, A. C.] Univ Estadual Campinas, Inst Phys Gleb Wataghin, BR-13083859 Sao Paulo, Brazil  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000321001100003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1508  
Permanent link to this record
 

 
Author (up) Aguilar, A.C.; Papavassiliou, J. url  doi
openurl 
  Title Chiral symmetry breaking with lattice propagators Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 83 Issue 1 Pages 014013 - 17pp  
  Keywords  
  Abstract We study chiral symmetry breaking using the standard gap equation, supplemented with the infrared-finite gluon propagator and ghost dressing function obtained from large-volume lattice simulations. One of the most important ingredients of this analysis is the non-Abelian quark-gluon vertex, which controls the way the ghost sector enters into the gap equation. Specifically, this vertex introduces a numerically crucial dependence on the ghost dressing function and the quark-ghost scattering amplitude. This latter quantity satisfies its own, previously unexplored, dynamical equation, which may be decomposed into individual integral equations for its various form factors. In particular, the scalar form factor is obtained from an approximate version of the “one-loop dressed” integral equation, and its numerical impact turns out to be rather considerable. The detailed numerical analysis of the resulting gap equation reveals that the constituent quark mass obtained is about 300 MeV, while fermions in the adjoint representation acquire a mass in the range of (750-962) MeV.  
  Address [Aguilar, A. C.] Fed Univ ABC, CCNH, BR-09210170 Santo Andre, Brazil, Email: Arlene.Aguilar@ufabc.edu.br  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000286765100005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 584  
Permanent link to this record
 

 
Author (up) Aguilar, A.C.; Papavassiliou, J. url  doi
openurl 
  Title Gluon mass generation without seagull divergences Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 81 Issue 3 Pages 034003 - 19pp  
  Keywords  
  Abstract Dynamical gluon mass generation has been traditionally plagued with seagull divergences, and all regularization procedures proposed over the years yield finite but scheme-dependent gluon masses. In this work we show how such divergences can be eliminated completely by virtue of a characteristic identity, valid in dimensional regularization. The ability to trigger the aforementioned identity hinges crucially on the particular Ansatz employed for the three-gluon vertex entering into the Schwinger-Dyson equation governing the gluon propagator. The use of the appropriate three-gluon vertex brings about an additional advantage: one obtains two separate (but coupled) integral equations, one for the effective charge and one for the gluon mass. This system of integral equations has a unique solution, which unambiguously determines these two quantities. Most notably, the effective charge freezes in the infrared, and the gluon mass displays power-law running in the ultraviolet, in agreement with earlier considerations.  
  Address [Aguilar, Arlene C.] Fed Univ ABC, CCNH, BR-09210170 Santo Andre, Brazil  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000275069000024 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 493  
Permanent link to this record
 

 
Author (up) Athenodorou, A.; Binosi, D.; Boucaud, P.; De Soto, F.; Papavassiliou, J.; Rodriguez-Quintero, J.; Zafeiropoulos, S. url  doi
openurl 
  Title On the zero crossing of the three-gluon vertex Type Journal Article
  Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 761 Issue Pages 444-449  
  Keywords Lattice simulations; Three-gluon vertex; Zero crossing; Schwinger-Dyson equations  
  Abstract We report on new results on the infrared behavior of the three-gluon vertex in quenched Quantum Chromodynamics, obtained from large-volume lattice simulations. The main focus of our study is the appearance of the characteristic infrared feature known as 'zero crossing', the origin of which is intimately connected with the nonperturbative masslessness of the Faddeev-Popov ghost. The appearance of this effect is clearly visible in one of the two kinematic configurations analyzed, and its theoretical origin is discussed in the framework of Schwinger-Dyson equations. The effective coupling in the momentum subtraction scheme that corresponds to the three-gluon vertex is constructed, revealing the vanishing of the effective interaction at the exact location of the zero crossing.  
  Address [Athenodorou, A.] Univ Cyprus, Dept Phys, POB 20537, CY-1678 Nicosia, Cyprus, Email: binosi@ectstar.eu  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000384469900063 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2939  
Permanent link to this record
 

 
Author (up) Binosi, D.; Chang, L.; Ding, M.H.; Gao, F.; Papavassiliou, J.; Roberts, C.D. url  doi
openurl 
  Title Distribution amplitudes of heavy-light mesons Type Journal Article
  Year 2019 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 790 Issue Pages 257-262  
  Keywords B-meson decays; Heavy-light mesons; Nonperturbative continuum methods in quantum field theory; Parton distribution amplitudes; Quantum chromodynamics  
  Abstract A symmetry-preserving approach to the continuum bound-state problem in quantum field theory is used to calculate the masses, leptonic decay constants and light-front distribution amplitudes of empirically accessible heavy-light mesons. The inverse moment of the B-meson distribution is particularly important in treatments of exclusive B-decays using effective field theory and the factorisation formalism; and its value is therefore computed: lambda(B) = (zeta = 2GeV) = 0.54(3) GeV. As an example and in anticipation of precision measurements at new-generation B-factories, the branching fraction for the rare B -> gamma (E-gamma)l nu(l) radiative decay is also calculated, retaining 1/m(B)(2), and 1/E-gamma(2) corrections to the differential decay width, with the result Gamma(B -> gamma l nu l) /Gamma(B) = 0.47 (15) on E-gamma > 1.5 GeV.  
  Address [Binosi, Daniele; Ding, Minghui] European Ctr Theoret Studies Nucl Phys & Related, Str Tabarelle 286, I-38123 Villazzano, TN, Italy, Email: binosi@ectstar.eu;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000460118200030 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3934  
Permanent link to this record
 

 
Author (up) Binosi, D.; Chang, L.; Papavassiliou, J.; Qin, S.X.; Roberts, C.D. url  doi
openurl 
  Title Natural constraints on the gluon-quark vertex Type Journal Article
  Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 95 Issue 3 Pages 031501 - 7pp  
  Keywords  
  Abstract In principle, the strong-interaction sector of the standard model is characterized by a unique renormalization-group-invariant (RGI) running interaction and a unique form for the dressed-gluonquark vertex, Gamma mu; but, whilst much has been learnt about the former, the latter is still obscure. In order to improve this situation, we use a RGI running-interaction that reconciles top-down and bottom-up analyses of the gauge sector in quantum chromodynamics (QCD) to compute dressed-quark gap equation solutions with 1,660,000 distinct Ansatze for Gamma mu. Each one of the solutions is then tested for compatibility with three physical criteria and, remarkably, we find that merely 0.55% of the solutions survive the test. Evidently, even a small selection of observables places extremely tight bounds on the domain of realistic vertex Ansatze. This analysis and its results should prove useful in constraining insightful contemporary studies of QCD and hadronic phenomena.  
  Address [Binosi, Daniele] European Ctr Theoret Studies Nucl Phys & Related, Str Tabarelle 286, I-38123 Villazzano, TN, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000393507500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2953  
Permanent link to this record
 

 
Author (up) Binosi, D.; Chang, L.; Papavassiliou, J.; Qin, S.X.; Roberts, C.D. url  doi
openurl 
  Title Symmetry preserving truncations of the gap and Bethe-Salpeter equations Type Journal Article
  Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 93 Issue 9 Pages 096010 - 7pp  
  Keywords  
  Abstract Ward-Green-Takahashi (WGT) identities play a crucial role in hadron physics, e.g. imposing stringent relationships between the kernels of the one-and two-body problems, which must be preserved in any veracious treatment of mesons as bound states. In this connection, one may view the dressed gluon-quark vertex, Gamma(alpha)(mu), as fundamental. We use a novel representation of Gamma(alpha)(mu), in terms of the gluon-quark scattering matrix, to develop a method capable of elucidating the unique quark-antiquark Bethe-Salpeter kernel, K, that is symmetry consistent with a given quark gap equation. A strength of the scheme is its ability to expose and capitalize on graphic symmetries within the kernels. This is displayed in an analysis that reveals the origin of H-diagrams in K, which are two-particle-irreducible contributions, generated as two-loop diagrams involving the three-gluon vertex, that cannot be absorbed as a dressing of Gamma(alpha)(mu) in a Bethe-Salpeter kernel nor expressed as a member of the class of crossed-box diagrams. Thus, there are no general circumstances under which the WGT identities essential for a valid description of mesons can be preserved by a Bethe-Salpeter kernel obtained simply by dressing both gluon-quark vertices in a ladderlike truncation; and, moreover, adding any number of similarly dressed crossed-box diagrams cannot improve the situation.  
  Address [Binosi, Daniele] European Ctr Theoret Studies Nucl Phys & Related, Str Tabarelle 286, I-38123 Villazzano, TN, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000376641000007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2689  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva