toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author XENON Collaboration (Aprile, E. et al); Orrigo, S.E.A. url  doi
openurl 
  Title Exclusion of leptophilic dark matter models using XENON100 electronic recoil data Type Journal Article
  Year 2015 Publication Science Abbreviated Journal Science  
  Volume 349 Issue 6250 Pages 851-854  
  Keywords  
  Abstract Laboratory experiments searching for galactic dark matter particles scattering off nuclei have so far not been able to establish a discovery. We use data from the XENON100 experiment to search for dark matter interacting with electrons. With no evidence for a signal above the low background of our experiment, we exclude a variety of representative dark matter models that would induce electronic recoils. For axial-vector couplings to electrons, we exclude cross sections above 6 x 10(-35) cm(2) for particle masses of m(chi) = 2 GeV/c(2). Independent of the dark matter halo, we exclude leptophilic models as an explanation for the long-standing DAMA/LIBRA signal, such as couplings to electrons through axial-vector interactions at a 4.4 sigma confidence level, mirror dark matter at 3.6 sigma, and luminous dark matter at 4.6 sigma.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Amer Assoc Advancement Science Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000359832700045 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2490  
Permanent link to this record
 

 
Author Mistry, A. K. et al; Tain, J.L.; Agramunt, J.; Algora, A.; Guadilla, V.; Morales, A.I.; Nacher, E.; Orrigo, S.E.A.; Rubio, B. doi  openurl
  Title The DESPEC setup for GSI and FAIR Type Journal Article
  Year 2022 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 1033 Issue Pages 166662 - 18pp  
  Keywords alpha, beta, gamma spectroscopy; Digital electronics; Fast timing; FAIR; DESPEC; NuSTAR  
  Abstract The DEcay SPECtroscopy (DESPEC) setup for nuclear structure investigations was developed and commissioned at GSI, Germany in preparation for a full campaign of experiments at the FRS and Super-FRS. In this paper, we report on the first employment of the setup in the hybrid configuration with the AIDA implanter coupled to the FATIMA LaBr3(Ce) fast-timing array, and high-purity germanium detectors. Initial results are shown from the first experiments carried out with the setup. An overview of the setup and function is discussed, including technical advancements along the path.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000794062100014 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5343  
Permanent link to this record
 

 
Author XENON Collaboration (Aprile, E. et al); Orrigo, S.E.A. url  doi
openurl 
  Title Search for two-neutrino double electron capture of Xe-124 with XENON100 Type Journal Article
  Year 2017 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 95 Issue 2 Pages 024605 - 6pp  
  Keywords  
  Abstract Two-neutrino double electron capture is a rare nuclear decay where two electrons are simultaneously captured from the atomic shell. For Xe-124 this process has not yet been observed and its detection would provide a new reference for nuclear matrix element calculations. We have conducted a search for two-neutrino double electron capture from the K shell of 124Xe using 7636 kg d of data from the XENON100 dark matter detector. Using a Bayesian analysis we observed no significant excess above background, leading to a lower 90% credibility limit on the half-life T-1/2 > 6.5 x 10(20) yr. We have also evaluated the sensitivity of the XENON1T experiment, which is currently being commissioned, and found a sensitivity of T-1/2 > 6.1 x 10(22) yr after an exposure of 2 t yr.  
  Address (up) [Agostini, F.; Barrow, P.; Berger, T.; Butikofer, L.; Cardoso, J. M. R.; Di Gangi, P.; Diglio, S.; Franco, D.; Garbini, M.; Grignon, C.; Kaminsky, B.; Le Calloch, M.; Lopes, J. A. M.; Orrigo, S. E. A.; Sartorelli, G.; Schreiner, J.; Thers, D.; Zhang, Y.] Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA, Email: a.fieguth@uni-muenster.de;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000393744200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2956  
Permanent link to this record
 

 
Author Algora, A.; Ganioglu, E.; Sarriguren, P.; Guadilla, V.; Fraile, L.M.; Nacher, E.; Rubio, B.; Tain, J.L.; Agramunt, J.; Gelletly, W.; Briz, J.A.; Cakirli, R.B.; Fallot, M.; Jordan, D.; Halasz, Z.; Kuti, I.; Montaner, A.; Onillon, A.; Orrigo, S.E.A.; Cerdan, A.P.; Rice, S.; Vedia, V.; Valencia, E. url  doi
openurl 
  Title Total absorption gamma-ray spectroscopy study of the beta-decay of Hg-186 Type Journal Article
  Year 2021 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 819 Issue Pages 136438 - 7pp  
  Keywords Betadecay; Totalabsorption spectroscopy; Shape coexistence  
  Abstract The Gamow-Teller strength distribution of the decay of Hg-186 into Au-186 has been determined for the first time using the total absorption gamma spectroscopy technique and has been compared with theoretical QRPA calculations using the SLy4 Skyrme force. The measured Gamow-Teller strength distribution and the half-life are described by mixing oblate and prolate configurations independently in the parent and daughter nuclei. In this theoretical framework the best description of the experimental beta strength is obtained with dominantly prolate components for both parent Hg-186 and daughter Au-186. The approach also allowed us to determine an upper limit of the oblate component in the parent state. The complexity of the analysis required the development of a new approach in the analysis of the X-ray gated total absorption spectrum.  
  Address (up) [Algora, A.; Guadilla, V; Nacher, E.; Rubio, B.; Tain, J. L.; Agramunt, J.; Jordan, D.; Montaner, A.; Orrigo, S. E. A.; Cerdan, A. Perez; Valencia, E.] Univ Valencia, Inst Fis Corpuscular, CSIC, E-46071 Valencia, Spain, Email: algora@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000679259200010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4923  
Permanent link to this record
 

 
Author XENON Collaboration (Aprile, E. et al); Orrigo, S.E.A. url  doi
openurl 
  Title Search for Event Rate Modulation in XENON100 Electronic Recoil Data Type Journal Article
  Year 2015 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 115 Issue 9 Pages 091302 - 6pp  
  Keywords  
  Abstract We have searched for periodic variations of the electronic recoil event rate in the (2-6) keVenergy range recorded between February 2011 and March 2012 with the XENON100 detector, adding up to 224.6 live days in total. Following a detailed study to establish the stability of the detector and its background contributions during this run, we performed an unbinned profile likelihood analysis to identify any periodicity up to 500 days. We find a global significance of less than 1 sigma for all periods, suggesting no statistically significant modulation in the data. While the local significance for an annual modulation is 2.8 sigma, the analysis of a multiple-scatter control sample and the phase of the modulation disfavor a dark matter interpretation. The DAMA/LIBRA annual modulation interpreted as a dark matter signature with axial-vector coupling of weakly interacting massive particles to electrons is excluded at 4.8 sigma.  
  Address (up) [Aprile, E.; Anthony, M.; Contreras, H.; de Perio, P.; Goetzke, L. W.; Fernandez, A. J. Melgarejo; Messina, M.; Plante, G.; Rizzo, A.; Weber, M.; Zhang, Y.] Columbia Univ, Dept Phys, New York, NY 10027 USA, Email: feigao.ge@sjtu.edu.cn;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000360289000004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2399  
Permanent link to this record
 

 
Author XENON Collaboration (Aprile, E. et al); Orrigo, S.E.A. url  doi
openurl 
  Title Physics reach of the XENON1T dark matter experiment Type Journal Article
  Year 2016 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 04 Issue 4 Pages 027 - 37pp  
  Keywords dark matter simulations; dark matter experiments  
  Abstract The XENON1T experiment is currently in the commissioning phase at the Laboratori Nazionali del Gran Sasso, Italy. In this article we study the experiment's expected sensitivity to the spin-independent WIMP-nucleon interaction cross section, based on Monte Carlo predictions of the electronic and nuclear recoil backgrounds. The total electronic recoil background in 1 tonne fiducial volume and (1, 12) keV electronic recoil equivalent energy region, before applying any selection to discriminate between electronic and nuclear recoils, is (1.80+/-0.15) . 10(-4) (kg.day.keV)(-1), mainly due to the decay of Rn-222 daughters inside the xenon target. The nuclear recoil background in the corresponding nuclear recoil equivalent energy region (4, 50) keV, is composed of (0.6 +/- 0.1) (t.y)(-1) from radiogenic neutrons, (1.8+/-0.3) . 10(-2) (t.y)(-1) from coherent scattering of neutrinos, and less than 0.01 (t.y)(-1) from muon-induced neutrons. The sensitivity of XENON1T is calculated with the Pro file Likelihood Ratio method, after converting the deposited energy of electronic and nuclear recoils into the scintillation and ionization signals seen in the detector. We take into account the systematic uncertainties on the photon and electron emission model, and on the estimation of the backgrounds, treated as nuisance parameters. The main contribution comes from the relative scintillation efficiency L-eff, which affects both the signal from WIMPs and the nuclear recoil backgrounds. After a 2 y measurement in 1 tonne fiducial volume, the sensitivity reaches a minimum cross section of 1.6 . 10(-47) cm(2) at m(chi) = 50 GeV/c(2).  
  Address (up) [Aprile, E.; Anthony, M.; Contreras, H.; de Perio, P.; Goetzke, L. W.; Greene, Z.; Fernandez, A. J. Melgarejo; Messina, M.; Plante, G.; Rizzo, A.; Weber, M.; Zhang, Y.] Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA, Email: cyril.grignon@uni-mainz.de;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000393286400005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2950  
Permanent link to this record
 

 
Author XENON Collaboration (Aprile, E. et al); Orrigo, S.E.A. url  doi
openurl 
  Title Online Rn-222 removal by cryogenic distillation in the XENON100 experiment Type Journal Article
  Year 2017 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 77 Issue 6 Pages 358 - 8pp  
  Keywords  
  Abstract We describe the purification of xenon from traces of the radioactive noble gas radon using a cryogenic distillation column. The distillation column was integrated into the gas purification loop of the XENON100 detector for online radon removal. This enabled us to significantly reduce the constant Rn-222 background originating from radon emanation. After inserting an auxiliary 222Rn emanation source in the gas loop, we determined a radon reduction factor of R > 27 (95% C.L.) for the distillation column by monitoring the Rn-222 activity concentration inside the XENON100 detector.  
  Address (up) [Aprile, E.; Anthony, M.; de Perio, P.; Gao, F.; Goetzke, L. W.; Greene, Z.; Lin, Q.; Messina, M.; Plante, G.; Rizzo, A.; Zhang, Y.] Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA, Email: stefan.bruenner@mpi-hd.mpg.de;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000402676000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3166  
Permanent link to this record
 

 
Author XENON Collaboration (Aprile, E. et al); Orrigo, S.E.A. url  doi
openurl 
  Title Results from a calibration of XENON100 using a source of dissolved radon-220 Type Journal Article
  Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 95 Issue 7 Pages 072008 - 10pp  
  Keywords  
  Abstract A Rn-220 source is deployed on the XENON100 dark matter detector in order to address the challenges in calibration of tonne-scale liquid noble element detectors. We show that the Pb-212 beta emission can be used for low-energy electronic recoil calibration in searches for dark matter. The isotope spreads throughout the entire active region of the detector, and its activity naturally decays below background level within a week after the source is closed. We find no increase in the activity of the troublesome Rn-222 background after calibration. Alpha emitters are also distributed throughout the detector and facilitate calibration of its response to Rn-222. Using the delayed coincidence of Rn-220-Po-216, we map for the first time the convective motion of particles in the XENON100 detector. Additionally, we make a competitive measurement of the half-life of Po-212, t(1/2) = (293.9 +/- (1.0)(stat) +/- (0.6)(sys)) ns.  
  Address (up) [Aprile, E.; Anthony, M.; de Perio, P.; Gao, F.; Goetzke, L. W.; Greene, Z.; Lin, Q.; Messina, M.; Plante, G.; Rizzo, A.; Zhang, Y.] Columbia Univ, Dept Phys, New York, NY USA, Email: rafael@purdue.edu  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000399945500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3101  
Permanent link to this record
 

 
Author XENON100 Collaboration (Aprile, E. et al); Orrigo, S.E.A. url  doi
openurl 
  Title Low-mass dark matter search using ionization signals in XENON100 Type Journal Article
  Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 94 Issue 9 Pages 092001 - 6pp  
  Keywords  
  Abstract We perform a low-mass dark matter search using an exposure of 30 kg x yr with the XENON100 detector. By dropping the requirement of a scintillation signal and using only the ionization signal to determine the interaction energy, we lowered the energy threshold for detection to 0.7 keV for nuclear recoils. No dark matter detection can be claimed because a complete background model cannot be constructed without a primary scintillation signal. Instead, we compute an upper limit on the WIMP-nucleon scattering cross section under the assumption that every event passing our selection criteria could be a signal event. Using an energy interval from 0.7 keV to 9.1 keV, we derive a limit on the spin-independent WIMP-nucleon cross section that excludes WIMPs with a mass of 6 GeV/c(2) above 1.4 x 10(-41) cm(2) at 90% confidence level.  
  Address (up) [Aprile, E.; Anthony, M.; de Perio, P.; Goetzke, L. W.; Greene, Z.; Fernandez, A. J. Melgarejo; Messina, M.; Plante, G.; Rizzo, A.; Weber, M.; Zhang, Y.] Columbia Univ, Dept Phys, New York, NY 10027 USA, Email: ran.budnik@weizmann.ac.il;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000386772500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2845  
Permanent link to this record
 

 
Author XENON100 Collaboration (Aprile, E. et al); Orrigo, S.E.A. url  doi
openurl 
  Title The neutron background of the XENON100 dark matter search experiment Type Journal Article
  Year 2013 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 40 Issue 11 Pages 115201 - 17pp  
  Keywords  
  Abstract TheXENON100 experiment, installed underground at the LaboratoriNazionali del Gran Sasso, aims to directly detect dark matter in the form of weakly interacting massive particles (WIMPs) via their elastic scattering off xenon nuclei. This paper presents a study on the nuclear recoil background of the experiment, taking into account neutron backgrounds from (alpha, n) reactions and spontaneous fission due to natural radioactivity in the detector and shield materials, as well as muon-induced neutrons. Based on MonteCarlo simulations and using measured radioactive contaminations of all detector components, we predict the nuclear recoil backgrounds for the WIMP search results published by theXENON100 experiment in 2011 and 2012, 0.11(-0.04)(+0.08) events and 0.17(-0.07)(+0.12) events, respectively, and conclude that they do not limit the sensitivity of the experiment.  
  Address (up) [Aprile, E.; Budnik, R.; Choi, B.; Contreras, H.; Giboni, K-L; Goetzke, L. W.; Lim, K. E.; Fernandez, A. J. Melgarejo; Messina, M.; Plante, G.; Rizzo, A.] Columbia Univ, Dept Phys, New York, NY 10027 USA, Email: alexkish@physik.uzh.ch  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000325766300004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1684  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva