|
Records |
Links |
|
Author |
Contreras, T.; Martins, A.; Stanford, C.; Escobar, C.O.; Guenette, R.; Stancari, M.; Martin-Albo, J.; Lawrence-Sanderson, B.; Para, A.; Kish, A.; Kellerer, F. |
|
|
Title |
A method to characterize metalenses for light collection applications |
Type |
Journal Article |
|
Year |
2023 |
Publication |
Journal of Instrumentation |
Abbreviated Journal |
J. Instrum. |
|
|
Volume |
18 |
Issue |
9 |
Pages |
T09004 - 11pp |
|
|
Keywords |
|
|
|
Abstract |
Metalenses and metasurfaces are promising emerging technologies that could improve light collection in light collection detectors, concentrating light on small area photodetectors such as silicon photomultipliers. Here we present a detailed method to characterize metalenses to assess their efficiency at concentrating monochromatic light coming from a wide range of incidence angles, not taking into account their imaging quality. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
6086 |
|
Permanent link to this record |
|
|
|
|
Author |
Loya Villalpando, A.A.; Martin-Albo, J.; Chen, W.T.; Guenette, R.; Lego, C.; Park, J.S.; Capasso, F. |
|
|
Title |
Improving the light collection efficiency of silicon photomultipliers through the use of metalenses |
Type |
Journal Article |
|
Year |
2020 |
Publication |
Journal of Instrumentation |
Abbreviated Journal |
J. Instrum. |
|
|
Volume |
15 |
Issue |
11 |
Pages |
P11021 - 13pp |
|
|
Keywords |
Optical detector readout concepts; Solid state detectors; Dark Matter detectors (WIMPS, axions, etc); Double-beta decay detectors |
|
|
Abstract |
Metalenses are optical devices that implement nanostructures as phase shifters to focus incident light. Their compactness and simple fabrication make them a potential cost-effective solution for increasing light collection efficiency in particle detectors with limited photosensitive area coverage. Here we report on the characterization and performance of metalenses in increasing the light collection efficiency of silicon photomultipliers (SiPM) of various sizes using an LED of 630 nm, and find a six to seven-fold increase in signal for a 1.3 x 1 3 mm(2) SiPM when coupled with a 10-mm-diameter metalens manufactured using deep ultraviolet stepper lithography. Such improvements could be valuable for future generations of particle detectors, particularly those employed in rare-event searches such as dark matter and neutrinoless double beta decay. |
|
|
Address |
[Villalpando, A. A. Loya; Martin-Albo, J.; Guenette, R.; Lego, C.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA, Email: aloyavil@caltech.edu |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Iop Publishing Ltd |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1748-0221 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:000595650800009 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
4634 |
|
Permanent link to this record |
|
|
|
|
Author |
Martins, A.; da Mota, A.F.; Stanford, C.; Contreras, T.; Martin-Albo, J.; Kish, A.; Escobar, C.O.; Para, A.; Guenette, R. |
|
|
Title |
Simple strategy for the simulation of axially symmetric large-area metasurfaces |
Type |
Journal Article |
|
Year |
2024 |
Publication |
Journal of the Optical Society of America B |
Abbreviated Journal |
J. Opt. Soc. Am. B |
|
|
Volume |
41 |
Issue |
5 |
Pages |
1261-1269 |
|
|
Keywords |
|
|
|
Abstract |
Metalenses are composed of nanostructures for focusing light and have been widely explored in many exciting applications. However, their expanding dimensions pose simulation challenges. We propose a method to simulate metalenses in a timely manner using vectorial wave and ray tracing models. We sample the metalens's radial phase gradient and locally approximate the phase profile by a linear phase response. Each sampling point is modeled as a binary blazed grating, employing the chosen nanostructure, to build a transfer function set. The metalens transmission or reflection is then obtained by applying the corresponding transfer function to the incoming field on the regions surrounding each sampling point. Fourier optics is used to calculate the scattered fields under arbitrary illumination for the vectorial wave method, and a Monte Carlo algorithm is used in the ray tracing formalism. We validated our method against finite -difference time domain simulations at 632 nm, and we were able to simulate metalenses larger than 3000 wavelengths in diameter on a personal computer. |
|
|
Address |
[Martins, Augusto; Guenette, Roxanne] Univ Manchester, Dept Phys, Manchester M13 9PL, England, Email: augusto.martins@york.ac.uk |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Optica Publishing Group |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0740-3224 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
WOS:001237140900001 |
Approved |
no |
|
|
Is ISI |
yes |
International Collaboration |
yes |
|
|
Call Number |
IFIC @ pastor @ |
Serial |
6140 |
|
Permanent link to this record |