toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Boucenna, S.M.; Fonseca, R.M.; Gonzalez-Canales, F.; Valle, J.W.F. url  doi
openurl 
  Title Small neutrino masses and gauge coupling unification Type Journal Article
  Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 91 Issue 3 Pages 031702 - 5pp  
  Keywords  
  Abstract The physics responsible for gauge coupling unification may also induce small neutrino masses. We propose a novel gauge-mediated radiative seesaw mechanism for calculable neutrino masses. These arise from quantum corrections mediated by new SU(3)(C) circle times SU(3)(L) circle times U(1)(X) (3-3-1) gauge bosons and the physics driving gauge coupling unification. Gauge couplings unify for a 3-3-1 scale in the TeV range, making the model directly testable at the LHC.  
  Address [Boucenna, Sofiane M.; Fonseca, Renato M.; Gonzalez-Canales, Felix; Valle, Jose W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: boucenna@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000350208800001 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 2144  
Permanent link to this record
 

 
Author Fonseca, R.M.; Hirsch, M. url  doi
openurl 
  Title SU(5)-inspired double beta decay Type Journal Article
  Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 92 Issue 1 Pages 015014 - 14pp  
  Keywords  
  Abstract The short-range part of the neutrinoless double beta amplitude is generated via the exchange of exotic particles, such as charged scalars, leptoquarks and/or diquarks. In order to give a sizable contribution to the total decay rate, the masses of these exotics should be of the order of (at most) a few TeV. Here, we argue that these exotics could be the “light” (i.e., weak-scale) remnants of some B – L violating variants of SU(5). We show that unification of the standard model gauge couplings, consistent with proton decay limits, can be achieved in such a setup without the need to introduce supersymmetry. Since these nonminimal SU(5)-inspired models violate B – L, they generate Majorana neutrino masses and therefore make it possible to explain neutrino oscillation data. The light colored particles of these models can potentially be observed at the LHC, and it might be possible to probe the origin of the neutrino masses with Delta L = 2 violating signals. As particular realizations of this idea, we present two models, one for each of the two possible tree-level topologies of neutrinoless double beta decay.  
  Address [Fonseca, Renato M.; Hirsch, Martin] Univ Valencia, AHEP Grp, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: renato.fonseca@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000357860200006 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 2300  
Permanent link to this record
 

 
Author Fonseca, R.M. url  doi
openurl 
  Title On the chirality of the SM and the fermion content of GUTs Type Journal Article
  Year 2015 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B  
  Volume 897 Issue Pages 757-780  
  Keywords  
  Abstract The Standard Model (SM) is a chiral theory, where right- and left-handed fermion fields transform differently under the gauge group. Extra fermions, if they do exist, need to be heavy otherwise they would have already been observed. With no complex mechanisms at work, such as confining interactions or extra-dimensions, this can only be achieved if every extra right-handed fermion comes paired with a left-handed one transforming in the same way under the Standard Model gauge group, otherwise the new states would only get a mass after electroweak symmetry breaking, which would necessarily be small (similar to 100 GeV). Such a simple requirement severely constrains the fermion content of Grand Unified Theories (GUTs). It is known for example that three copies of the representations (5) over bar + 10 of SU(5) or three copies of the 16 of SO(10) can reproduce the Standard Model's chirality, but how unique are these arrangements? In a systematic way, this paper looks at the possibility of having non-standard mixtures of fermion GUT representations yielding the correct Standard Model chirality. Family unification is possible with large special unitary groups for example, the 171 representation of SU(19) may decompose as 3(16) + 120 + 3(1) under SO(10).  
  Address Univ Valencia, AHEP Grp, Inst Fis Corpuscular, CSIC, E-46071 Valencia, Spain, Email: renato.fonseca@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0550-3213 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000358623600032 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 2328  
Permanent link to this record
 

 
Author Bonilla, C.; Fonseca, R.M.; Valle, J.W.F. url  doi
openurl 
  Title Consistency of the triplet seesaw model revisited Type Journal Article
  Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 92 Issue 7 Pages 075028 - 7pp  
  Keywords  
  Abstract Adding a scalar triplet to the Standard Model is one of the simplest ways of giving mass to neutrinos, providing at the same time a mechanism to stabilize the theory's vacuum. In this paper, we revisit these aspects of the type-II seesaw model pointing out that the bounded-from-below conditions for the scalar potential in use in the literature are not correct. We discuss some scenarios where the correction can be significant and sketch the typical scalar boson profile expected by consistency.  
  Address [Bonilla, Cesar; Fonseca, Renato M.; Valle, J. W. F.] CSIC Univ Valencia, AHEP Grp, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: cbonilla@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000363237400013 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 2423  
Permanent link to this record
 

 
Author Bonilla, C.; Fonseca, R.M.; Valle, J.W.F. url  doi
openurl 
  Title Vacuum stability with spontaneous violation of lepton number Type Journal Article
  Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 756 Issue Pages 345-349  
  Keywords  
  Abstract The vacuum of the Standard Model is known to be unstable for the measured values of the top and Higgs masses. Here we show how vacuum stability can be achieved naturally if lepton number is violated spontaneously at the TeV scale. More precise Higgs measurements in the next LHC run should provide a crucial test of our symmetry breaking scenario. In addition, these schemes typically lead to enhanced rates for processes involving lepton flavor violation.  
  Address [Bonilla, Cesar; Fonseca, Renato M.; Valle, Jose W. F.] Univ Valencia, AHEP Grp, Inst Fis Corpuscular, CSIC, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Valencia, Spain, Email: cesar.bonilla@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000373569200053 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 2638  
Permanent link to this record
 

 
Author Fonseca, R.M.; Hirsch, M. url  doi
openurl 
  Title A flipped 331 model Type Journal Article
  Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 003 - 12pp  
  Keywords Beyond Standard Model; Gauge Symmetry; Neutrino Physics  
  Abstract Models based on the extended SU(3)(C) x SU(3)(L) x U(1)(X) (331) gauge group usually follow a common pattern: two families of left-handed quarks are placed in anti triplet representations of the SU(3)(L) group; the remaining quark family, as well as the left-handed leptons, are assigned to triplets (or vice-versa). In this work we present a flipped 331 model where this scheme is reversed: all three quark families are in the same representation and it is the lepton families which are discriminated by the gauge symmetry. We discuss fermion masses and mixing, as well as Z' interactions, in a minimal model implementing this idea.  
  Address [Fonseca, Renato M.; Hirsch, Martin] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna,Calle Jose Beltran, E-46980 Paterna, Valencia, Spain, Email: renato.fonseca@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000381218300003 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 2782  
Permanent link to this record
 

 
Author Fonseca, R.M.; Hirsch, M. url  doi
openurl 
  Title Lepton number violation in 331 models Type Journal Article
  Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 94 Issue 11 Pages 115003 - 16pp  
  Keywords  
  Abstract Different models based on the extended SU(3)(C) x SU(3)(L) x U(1)(X) (331) gauge group have been proposed over the past four decades. Yet, despite being an active research topic, the status of lepton number in 331 models has not been fully addressed in the literature, and furthermore many of the original proposals can not explain the observed neutrino masses. In this paper we review the basic features of various 331 models, focusing on potential sources of lepton number violation. We then describe different modifications which can be made to the original models in order to accommodate neutrino (and charged lepton) masses.  
  Address [Fonseca, Renato M.; Hirsch, Martin] Univ Valencia, AHEP Grp, CSIC, Inst Fis Corpuscular, Parc Cient Paterna,Calle Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: renato.fonseca@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000389026700005 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 2874  
Permanent link to this record
 

 
Author Fonseca, R.M.; Hirsch, M. url  doi
openurl 
  Title Gauge vectors and double beta decay Type Journal Article
  Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 95 Issue 3 Pages 035033 - 14pp  
  Keywords  
  Abstract We discuss contributions to neutrinoless double beta (0 nu beta beta) decay involving vector bosons. The starting point is a list of all possible vector representations that may contribute to 0 nu beta beta decay via d = 9 or d = 11 operators at tree level. We then identify gauge groups which contain these vectors in the adjoint representation. Even though the complete list of vector fields that can contribute to 0 nu beta beta up to d = 11 is large (a total of 46 vectors), only a few of them can be gauge bosons of phenomenologically realistic groups. These latter cases are discussed in some more detail, and lower (upper) limits on gauge boson masses (mixing angles) are derived from the absence of 0 nu beta beta decay.  
  Address [Fonseca, Renato M.; Hirsch, Martin] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna,Calle Catedrat Jose Beltran, E-46980 Paterna, Valencia, Spain, Email: renato.fonseca@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000396024300010 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 3012  
Permanent link to this record
 

 
Author Fonseca, R.M.; Hirsch, M.; Srivastava, R. url  doi
openurl 
  Title Delta L=3 processes: Proton decay and the LHC Type Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 97 Issue 7 Pages 075026 - 7pp  
  Keywords  
  Abstract We discuss lepton number violation in three units. From an effective field theory point of view, Delta L = 3 processes can only arise from dimension 9 or higher operators. These operators also violate baryon number, hence many of them will induce proton decay. Given the high dimensionality of these operators, in order to have a proton half-life in the observable range, the new physics associated to Delta L = 3 processes should be at a scale as low as 1 TeV. This opens up the possibility of searching for such processes not only in proton decay experiments but also at the LHC. In this work we analyze the relevant d = 9, 11, 13 operators which violate lepton number in three units. We then construct one simple concrete model with interesting low- and high-energy phenomenology.  
  Address [Fonseca, Renato M.; Hirsch, Martin; Srivastava, Rahul] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: renato.fonseca@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000430459800005 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 3560  
Permanent link to this record
 

 
Author Anamiati, G.; Fonseca, R.M.; Hirsch, M. url  doi
openurl 
  Title Quasi-Dirac neutrino oscillations Type Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 97 Issue 9 Pages 095008 - 16pp  
  Keywords  
  Abstract Dirac neutrino masses require two distinct neutral Weyl spinors per generation, with a special arrangement of masses and interactions with charged leptons. Once this arrangement is perturbed, lepton number is no longer conserved and neutrinos become Majorana particles. If these lepton number violating perturbations are small compared to the Dirac mass terms, neutrinos are quasi-Dirac particles. Alternatively, this scenario can be characterized by the existence of pairs of neutrinos with almost degenerate masses, and a lepton mixing matrix which has 12 angles and 12 phases. In this work we discuss the phenomenology of quasi-Dirac neutrino oscillations and derive limits on the relevant parameter space from various experiments. In one parameter perturbations of the Dirac limit, very stringent bounds can be derived on the mass splittings between the almost degenerate pairs of neutrinos. However, we also demonstrate that with suitable changes to the lepton mixing matrix, limits on such mass splittings are much weaker, or even completely absent. Finally, we consider the possibility that the mass splittings are too small to be measured and discuss bounds on the new, nonstandard lepton mixing angles from current experiments for this case.  
  Address [Anamiati, Gaetana; Fonseca, Renato M.; Hirsch, Martin] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Edificio Inst Paterna,Apartado 22085, E-46071 Valencia, Spain, Email: anamiati@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000432970600004 Approved no  
  Is ISI yes International Collaboration (up) no  
  Call Number IFIC @ pastor @ Serial 3581  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva