toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Dai, L.R.; Song, J.; Oset, E. url  doi
openurl 
  Title Evolution of genuine states to molecular ones: The Tcc(3875) case Type Journal Article
  Year 2023 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 846 Issue Pages 138200 - 6pp  
  Keywords  
  Abstract We address the issue of the compositeness of hadronic states and demonstrate that starting with a genuine state of nonmolecular nature, but which couples to some meson-meson component to be observable in that channel, if that state is blamed for a bound state appearing below the meson-meson threshold it gets dressed with a meson cloud and it becomes pure molecular in the limit case of zero binding. We discuss the issue of the scales, and see that if the genuine state has a mass very close to threshold, the theorem holds, but the molecular probability goes to unity in a very narrow range of energies close to threshold. The conclusion is that the value of the binding does not determine the compositeness of a state. However, in such extreme cases we see that the scattering length gets progressively smaller and the effective range grows indefinitely. In other words, the binding energy does not determine the compositeness of a state, but the additional information of the scattering length and effective range can provide an answer. We also show that the consideration of a direct attractive interaction between the mesons in addition to having a genuine component, increases the compositeness of the state. Explicit calculations are done for the Tcc(3875) state, but are easily generalized to any hadronic system.  
  Address [Dai, L. R.] Huzhou Univ, Sch Sci, Huzhou 313000, Zhejiang, Peoples R China, Email: dailianrong@zjhu.edu.cn;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001088653400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5760  
Permanent link to this record
 

 
Author Dai, L.R.; Abreu, L.M.; Feijoo, A.; Oset, E. url  doi
openurl 
  Title The isospin and compositeness of the Tcc(3875) state Type Journal Article
  Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 83 Issue 10 Pages 983 - 11pp  
  Keywords  
  Abstract We perform a fit to the LHCb data on the T-cc(3875) state in order to determine its nature. We use a general framework that allows to have the (DD & lowast;+)-D-0, (D+D & lowast;0) components forming a molecular state, as well as a possible nonmolecular state or contributions from missing coupled channels. From the fits to the data we conclude that the state observed is clearly of molecular nature from the (DD & lowast;+)-D-0, (D+D & lowast;0) components and the possible contribution of a nonmolecular state or missing channels is smaller than 3%, compatible with zero. We also determine that the state has isospin I=0 with a minor isospin breaking from the different masses of the channels involved, and the probabilities of the (DD & lowast;+)-D-0, (D+D & lowast;0) channels are of the order of 69% and 29% with uncertainties of 1%. The differences between these probabilities should not be interpreted as a measure of the isospin violation. Due to the short range of the strong interaction where the isospin is manifested, the isospin nature is provided by the couplings of the state found to the (DD & lowast;+)-D-0, (D+D & lowast;0) components, and our results for these couplings indicate that we have an I=0 state with a very small isospin breaking. We also find that the potential obtained provides a repulsive interaction in I=1, preventing the formation of an I=1 state, in agreement with what is observed in the experiment.  
  Address [Dai, L. R.] Huzhou Univ, Sch Sci, Huzhou 313000, Zhejiang, Peoples R China, Email: edfeijoo@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001098883700004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5796  
Permanent link to this record
 

 
Author Song, J.; Dai, L.R.; Oset, E. url  doi
openurl 
  Title Evolution of compact states to molecular ones with coupled channels: The case of the X(3872) Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 108 Issue 11 Pages 114017 - 11pp  
  Keywords  
  Abstract We study the molecular probability of the X(3872) in the D0 over bar D*0 and D+D*- channels in several scenarios. One of them assumes that the state is purely due to a genuine nonmolecular component. However, it gets unavoidably dressed by the meson components to the point that in the limit of zero binding of the D0 over bar D*0 component becomes purely molecular. Yet, the small but finite binding allows for a nonmolecular state when the bare mass of the genuine state approaches the D0 over bar D*0 threshold, but, in this case the system develops a small scattering length and a huge effective range for this channel in flagrant disagreement with present values of these magnitudes. Next we discuss the possibility to have hybrid states stemming from the combined effect of a genuine state and a reasonable direct interaction between the meson components, where we find cases in which the scattering length and effective range are still compatible with data, but even then the molecular probability is as big as 95%. Finally, we perform the calculations when the binding stems purely from the direct interaction between the meson-meson components. In summary we conclude, that while present data definitely rule out the possibility of a dominant nonmolecular component, the precise value of the molecular probability requires a more precise