toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Bernabeu, J. url  doi
openurl 
  Title Discrete Symmetries CP,T,CPT Type Journal Article
  Year 2016 Publication Acta Physica Polonica B Abbreviated Journal Acta Phys. Pol. B  
  Volume 47 Issue 2 Pages 417-424  
  Keywords  
  Abstract The role of symmetry breaking mechanisms to search for new physics is of highest importance. We discuss the status and prospects of the discrete symmetries CP, T, CPT looking for their separate violation in LHC experiments and meson factories.  
  Address [Bernabeu, Jose] Univ Valencia, Dept Theoret Phys, E-46003 Valencia, Spain, Email: jose.bernabeu@uv.es  
  Corporate Author Thesis  
  Publisher Wydawnictwo Uniwersytetu Jagiellonskiego Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0587-4254 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000373493700022 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2628  
Permanent link to this record
 

 
Author (up) Bernabeu, J.; Botella, F.J.; Mavromatos, N.E.; Nebot, M. url  doi
openurl 
  Title The signal of ill-defined CPT weakening entanglement in the B-d system Type Journal Article
  Year 2017 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 77 Issue 12 Pages 865 - 10pp  
  Keywords  
  Abstract In the presence of quantum-gravity fluctuations (space-time foam), the CPT operator may be ill-defined. Its perturbative treatment leads to a modification of the Einstein-Podolsky- Rosen correlation of the neutral meson system by adding an entanglement-weakening term of the wrong exchange symmetry, the omega-effect. In the current paper we identify how to probe the complex omega in the entangled B-d system using the flavour (f)-CP(g) eigenstate decay channels: the connection between the intensities for the two timeordered decays (f, g) and (g, f) is lost. Appropriate observables are constructed allowing independent experimental determinations of Re(omega) and Im(omega), disentangled from CPT violation in the evolution Hamiltonian Re(theta) and Im(theta). 2 sigma tensions for both Re(theta) and Im(omega) are shown to be uncorrelated.  
  Address [Bernabeu, Jose; Botella, Francisco J.; Mavromatos, Nick E.] Univ Valencia, Dept Fis Teor, IFIC, CSIC, E-46100 Burjassot, Spain, Email: Jose.Bernabeu@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000417827300005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3414  
Permanent link to this record
 

 
Author (up) Bernabeu, J.; Botella, F.J.; Nebot, M. url  doi
openurl 
  Title Genuine T, CP, CPT asymmetry parameters for the entangled B-d system Type Journal Article
  Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue 6 Pages 100 - 24pp  
  Keywords Discrete Symmetries; Space-Time Symmetries  
  Abstract The precise connection between the theoretical T, CP, CPT asymmetries, in terms of transition probabilities between the filtered neutral meson B-d states, and the experimental asymmetries, in terms of the double decay rate intensities for Flavour-CP eigenstate decay products in a B-d-factory of entangled states, is established. This allows the identification of genuine Asymmetry Parameters in the time distribution of the asymmetries and their measurability by disentangling genuine and possible fake terms. We express the nine asymmetry parameters three different observables for each one of the three symmetries in terms of the ingredients of the Weisskopf-Wigner dynamical description of the entangled B-d-meson states and we obtain a global fit to their values from the BaBar collaboration experimental results. The possible fake terms are all compatible with zero and the information content of the nine asymmetry parameters is indeed different. The non -vanishing Delta l(c)(T) = 0.687 +/- 0.020 and Delta l(c)(CP) = 0.680 +/- 0.021 are impressive separate direct evidence of Time -Reversal -violation and CP-violation in these transitions and compatible with Standard Model expectations. An intriguing 2 sigma effect for the Re(theta) parameter responsible of CPT -violation appears which, interpreted as an upper limit, leads to vertical bar M (B) over baro (B) over baro vertical bar MBoBo < 4.0 x 10(-5) eV at 95% C.L. for the diagonal flavour terms of the mass matrix. It contributes to the CP-violating Delta l(c)(CP) asymmetry parameter in an unorthodox manner – in its cos(Delta M t) time dependence-, and it is accessible in facilities with non-entangled B-d's, like the LHCb experiment.  
  Address [Bernabeu, Jose] Univ Valencia, Dept Fis Teor, E-46100 Valencia, Spain, Email: Jose.Bernabeu@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000379028400001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2752  
Permanent link to this record
 

 
Author (up) Bernabeu, J.; Botella, F.J.; Nebot, M. url  doi
openurl 
  Title Novel T-Violation observable open to any pair of decay channels at meson factories Type Journal Article
  Year 2014 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 728 Issue Pages 95-98  
  Keywords  
  Abstract Quantum entanglement between the two neutral mesons produced in meson factories has allowed the first indisputable direct observation of Time Reversal Violation in the time evolution of the neutral meson between the two decays. The exceptional meson transitions are directly connected to semileptonic and CP eigenstate decay channels. The possibility of extending the observable asymmetries to more decay channels confronts the problem of the “orthogonality condition”, which can be stated with this tonguetwister: Given a decay channel f, which is the decay channel f' such that the meson state not decaying to f is orthogonal to the meson state not decaying to f? In this Letter we propose an alternative T-Violation asymmetry at meson factories which allows its opening to any pair of decay channels. Instead of searching which is the pair of decay channels associated to the T-reverse meson transition, we build an asymmetry which tags the initial states of both the Reference and the T-reverse meson transitions. This observable filters the appropriate final states by means of two measurable survival probabilities. We discuss the methodology to be followed in the analysis of the new observable and the results expected in specific examples.  
  Address [Nebot, Miguel] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Burjassot, Spain, Email: Jose.Bernabeu@uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000330556000017 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1705  
Permanent link to this record
 

 
Author (up) Bernabeu, J.; Botella, F.J.; Nebot, M.; Segarra, A. url  doi
openurl 
  Title B-0 – (B)over-bar(0) entanglement for an ideal experiment for the direct CP violation phi(3)/gamma phase Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 106 Issue 5 Pages 054026 - 7pp  
  Keywords  
  Abstract B-0-(B) over bar0 entanglement offers a conceptual alternative to the single charged B-decay asymmetry for the measurement of the direct CP-violating gamma/phi(3) phase. With f = J/Psi(L); J/Psi K-S and g = (pi pi)(0); (rho(L)rho(L))(0), the 16 time-ordered double-decay rate intensities to (f, g) depend on the relative phase between the f- and g-decay amplitudes given by gamma at tree level. Several constraining consistencies appear. An intrinsic accuracy of the method at the level of +/- 1 degrees could be achievable at Belle-II with an improved determination of the penguin amplitude to g channels from existing facilities.  
  Address [Bernabeu, Jose; Botella, Francisco J.; Nebot, Miguel] Univ Valencia, Dept Theoret Phys, Valencia 46100, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000882839300002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5406  
Permanent link to this record
 

 
Author (up) Bernabeu, J.; Di Domenico, A. url  doi
openurl 
  Title Can future observation of the living partner post-tag the past decayed state in entangled neutral K mesons? Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 105 Issue 11 Pages 116004 - 8pp  
  Keywords  
  Abstract Entangled neutral K mesons allow for the study of their correlated dynamics at interference and decoherence times not accessible in any other system. We find novel quantum phenomena associated to a correlation in time between the two partners: The past state of the first decayed kaon, when it was entangled before its decay, is post-tagged by the result and the time of the future observation of the second decay channel. This surprising “from future to past” effect is fully observable and leads to the unique experimental tag of the K-S state, an unsolved problem since the discovery of CP violation.  
  Address [Bernabeu, Jose] Univ Valencia, Dept Theoret Phys, E-46100 Valencia, Spain, Email: jose.bernabeu@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000892122400008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5431  
Permanent link to this record
 

 
Author (up) Bernabeu, J.; Di Domenico, A.; Villanueva-Perez, P. url  doi
openurl 
  Title Probing CPT in transitions with entangled neutral kaons Type Journal Article
  Year 2015 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 139 - 19pp  
  Keywords Discrete and Finite Symmetries; Kaon Physics; CP violation  
  Abstract In this paper we present a novel CPT symmetry test in the neutral kaon system based, for the first time, on the direct comparison of the probabilities of a transition and its CPT reverse. The required interchange of in <-> out states for a given process is obtained exploiting the Einstein-Podolsky-Rosen correlations of neutral kaon pairs produced at a phi-factory. The observable quantities have been constructed by selecting the two semileptonic decays for flavour tag, the pi and 3 pi(0) decays for CP tag and the time orderings of the decay pairs. The interpretation in terms of the standard Weisskopf-Wigner approach to this system, directly connects CPT violation in these observables to the violating R delta parameter in the mass matrix of K-0 – (K) over bar (0), a genuine CPT violating effect independent of Delta Gamma and not requiring the decay as an essential ingredient. Possible spurious effects induced by CP violation in the decay and/or a violation of the Delta S = Delta Q rule have been shown to be well under control. The proposed test is thus fully robust, and might shed light on possible new CPT violating mechanisms, or further improve the precision of the present experimental limits. It could be implemented at the DA Phi NE facility in Frascati, where the KLOE-2 experiment might reach a statistical sensitivity of O (10(-3)) on the newly proposed observable quantities.  
  Address [Bernabeu, J.; Villanueva-Perez, P.] Univ Valencia, Dept Theoret Phys, E-46100 Valencia, Spain, Email: jose.bernabeu@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000363478100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2420  
Permanent link to this record
 

 
Author (up) Bernabeu, J.; Di Domenico, A.; Villanueva-Perez, P. url  doi
openurl 
  Title Direct test of time reversal symmetry in the entangled neutral kaon system at a phi-factory Type Journal Article
  Year 2013 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B  
  Volume 868 Issue 1 Pages 102-119  
  Keywords Time reversal violation; Discrete symmetries; Neutral kaons; phi-Factory  
  Abstract We present a novel method to perform a direct T (time reversal) symmetry test in the neutral kaon system, independent of any CP and/or CPT symmetry tests. This is based on the comparison of suitable transition probabilities, where the required interchange of in <-> out states for a given process is obtained exploiting the Einstein-Podolski-Rosen correlations of neutral kaon pairs produced at a phi-factory. In the time distribution between the two decays, we compare a reference transition like the one defined by the time-ordered decays (l(-), pi pi) with the T-conjugated one defined by (3 pi(0), l(+)). With the use of this and other T-conjugated comparisons, the KLOE-2 experiment at DA Phi NE could make a statistically significant test.  
  Address [Bernabeu, J.; Villanueva-Perez, P.] Univ Valencia, Dept Theoret Phys, Valencia, Spain, Email: jose.bernabeu@uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0550-3213 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000314194800006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1320  
Permanent link to this record
 

 
Author (up) Bernabeu, J.; Espinoza, C.; Mavromatos, N.E. url  doi
openurl 
  Title Cosmological constant and local gravity Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 81 Issue 8 Pages 084002 - 7pp  
  Keywords  
  Abstract We discuss the linearization of Einstein equations in the presence of a cosmological constant, by expanding the solution for the metric around a flat Minkowski space-time. We demonstrate that one can find consistent solutions to the linearized set of equations for the metric perturbations, in the Lorentz gauge, which are not spherically symmetric, but they rather exhibit a cylindrical symmetry. We find that the components of the gravitational field satisfying the appropriate Poisson equations have the property of ensuring that a scalar potential can be constructed, in which both contributions, from ordinary matter and Lambda > 0, are attractive. In addition, there is a novel tensor potential, induced by the pressure density, in which the effect of the cosmological constant is repulsive. We also linearize the Schwarzschild-de Sitter exact solution of Einstein's equations ( due to a generalization of Birkhoff's theorem) in the domain between the two horizons. We manage to transform it first to a gauge in which the 3-space metric is conformally flat and, then, make an additional coordinate transformation leading to the Lorentz gauge conditions. We compare our non-spherically symmetric solution with the linearized Schwarzschild-de Sitter metric, when the latter is transformed to the Lorentz gauge, and we find agreement. The resulting metric, however, does not acquire a proper Newtonian form in terms of the unique scalar potential that solves the corresponding Poisson equation. Nevertheless, our solution is stable, in the sense that the physical energy density is positive.  
  Address [Bernabeu, Jose; Espinoza, Catalina] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000277205000057 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 460  
Permanent link to this record
 

 
Author (up) Bernabeu, J.; Espriu, D.; Puigdomenech, D. url  doi
openurl 
  Title Gravitational waves in the presence of a cosmological constant Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 84 Issue 6 Pages 063523 - 13pp  
  Keywords  
  Abstract We derive the effects of a nonzero cosmological constant Lambda on gravitational wave propagation in the linearized approximation of general relativity. In this approximation, we consider the situation where the metric can be written as g(mu nu) = eta(mu nu) + h(mu nu)(Lambda) + h(mu nu)(W), h(mu nu)(Lambda,W) << 1, where h(mu nu)(Lambda) is the background perturbation and h(mu nu)(W) is a modification interpretable as a gravitational wave. For Lambda not equal 0, this linearization of Einstein equations is self-consistent only in certain coordinate systems. The cosmological Friedmann-Robertson-Walker coordinates do not belong to this class and the derived linearized solutions have to be reinterpreted in a coordinate system that is homogeneous and isotropic to make contact with observations. Plane waves in the linear theory acquire modifications of order root Lambda, both in the amplitude and the phase, when considered in Friedmann-Robertson-Walker coordinates. In the linearization process for h(mu nu), we have also included terms of order O(Lambda h(mu nu)). For the background perturbation h(mu nu)(Lambda), the difference is very small, but when the term h(mu nu)(W)Lambda is retained the equations of motion can be interpreted as describing massive spin-2 particles. However, the extra degrees of freedom can be approximately gauged away, coupling to matter sources with a strength proportional to the cosmological constant itself. Finally, we discuss the viability of detecting the modifications caused by the cosmological constant on the amplitude and phase of gravitational waves. In some cases, the distortion with respect to gravitational waves propagating in Minkowski space-time is considerable. The effect of Lambda could have a detectable impact on pulsar timing arrays.  
  Address [Bernabeu, J] Univ Valencia, Dept Fis Teor IFIC, CSIC, E-46100 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000295223100005 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 766  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva