toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Aarrestad, T. et al; Mamuzic, J.; Ruiz de Austri, R. url  doi
openurl 
  Title Benchmark data and model independent event classification for the large hadron collider Type Journal Article
  Year 2022 Publication Scipost Physics Abbreviated Journal SciPost Phys.  
  Volume 12 Issue 1 Pages 043 - 57pp  
  Keywords  
  Abstract We describe the outcome of a data challenge conducted as part of the Dark Machines (https://www.darkmachines.org) initiative and the Les Houches 2019 workshop on Physics at TeV colliders. The challenged aims to detect signals of new physics at the Large Hadron Collider (LHC) using unsupervised machine learning algorithms. First, we propose how an anomaly score could be implemented to define model-independent signal regions in LHC searches. We define and describe a large benchmark dataset, consisting of > 1 billion simulated LHC events corresponding to 10 fb(-1) of proton-proton collisions at a center-of-mass energy of 13 TeV. We then review a wide range of anomaly detection and density estimation algorithms, developed in the context of the data challenge, and we measure their performance in a set of realistic analysis environments. We draw a number of useful conclusions that will aid the development of unsupervised new physics searches during the third run of the LHC, and provide our benchmark dataset for future studies at https://www.phenoMLdata.org. Code to reproduce the analysis is provided at https://github.com/bostdiek/DarkMachines-UnsupervisedChallenge.  
  Address [Aarrestad, Thea; Heinrich, Lukas A.; Jawahar, Pratik; Pierini, Maurizio; Touranakou, Mary; Wozniak, Kinga A.] European Org Nucl Res CERN, CH-1211 Geneva 23, Switzerland  
  Corporate Author Thesis  
  Publisher Scipost Foundation Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2542-4653 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000807448000038 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5256  
Permanent link to this record
 

 
Author (up) Baamara, Y.; Gessner, M.; Sinatra, A. url  doi
openurl 
  Title Quantum-enhanced multiparameter estimation and compressed sensing of a field Type Journal Article
  Year 2023 Publication Scipost Physics Abbreviated Journal SciPost Phys.  
  Volume 14 Issue 3 Pages 050 - 18pp  
  Keywords  
  Abstract We show that a significant quantum gain corresponding to squeezed or over-squeezed spin states can be obtained in multiparameter estimation by measuring the Hadamard coefficients of a 1D or 2D signal. The physical platform we consider consists of twolevel atoms in an optical lattice in a squeezed-Mott configuration, or more generally by correlated spins distributed in spatially separated modes. Our protocol requires the possibility to locally flip the spins, but relies on collective measurements. We give examples of applications to scalar or vector field mapping and compressed sensing.  
  Address [Baamara, Youcef; Sinatra, Alice] Univ PSL, Univ Sorbonne, ENS, Lab Kastler Brossel,CNRS, 24 Rue Lhomond, F-75231 Paris, France, Email: alice.sinatra@lkb.ens.fr  
  Corporate Author Thesis  
  Publisher Scipost Foundation Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2542-4653 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000974981200008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5519  
Permanent link to this record
 

 
Author (up) Banerjee, P.; Coutinho, A.; Engel, T.; Gurgone, A.; Signer, A.; Ulrich, Y. url  doi
openurl 
  Title High-precision muon decay predictions for ALP searches Type Journal Article
  Year 2023 Publication Scipost Physics Abbreviated Journal SciPost Phys.  
  Volume 15 Issue 1 Pages 021 - 38pp  
  Keywords  
  Abstract We present an improved theoretical prediction of the positron energy spectrum for the polarised Michel decay & mu;+ & RARR; e+ & nu;e & nu; over bar & mu;. In addition to the full next-to-next-to-leading order correction of order & alpha;2 in the electromagnetic coupling, we include logarithmically enhanced terms at even higher orders. Logarithms due to collinear emission are included at next-to-leading accuracy up to order & alpha;4. At the endpoint of the Michel spectrum, soft photon emission results in large logarithms that are resummed up to next-to-next-to leading logarithmic accuracy. We apply our results in the context of the MEG II and Mu3e experiments to estimate the impact of the theory error on the branching ratio sensitivity for the lepton-flavour-violating decay & mu;+ & RARR; e+X of a muon into an axion-like particle X.  
  Address [Banerjee, Pulak] Zhejiang Univ, Zhejiang Inst Modern Phys, Dept Phys, Hangzhou 310027, Peoples R China  
  Corporate Author Thesis  
  Publisher Scipost Foundation Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2542-4653 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001038392400002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5595  
Permanent link to this record
 

 
Author (up) Barenboim, G.; Hirn, J.; Sanz, V. url  doi
openurl 
  Title Symmetry meets AI Type Journal Article
  Year 2021 Publication Scipost Physics Abbreviated Journal SciPost Phys.  
  Volume 11 Issue 1 Pages 014 - 11pp  
  Keywords  
  Abstract We explore whether Neural Networks (NNs) can discover the presence of symmetries as they learn to perform a task. For this, we train hundreds of NNs on a decoy task based on well-controlled Physics templates, where no information on symmetry is provided. We use the output from the last hidden layer of all these NNs, projected to fewer dimensions, as the input for a symmetry classification task, and show that information on symmetry had indeed been identified by the original NN without guidance. As an interdisciplinary application of this procedure, we identify the presence and level of symmetry in artistic paintings from different styles such as those of Picasso, Pollock and Van Gogh.  
  Address [Barenboim, Gabriela; Hirn, Johannes; Sanz, Veronica] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain  
  Corporate Author Thesis  
  Publisher Scipost Foundation Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2542-4653 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000680039500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4920  
Permanent link to this record
 

 
Author (up) Cranmer, K. et al; Sanz, V. url  doi
openurl 
  Title Publishing statistical models: Getting the most out of particle physics experiments Type Journal Article
  Year 2022 Publication Scipost Physics Abbreviated Journal SciPost Phys.  
  Volume 12 Issue 1 Pages 037 - 55pp  
  Keywords  
  Abstract The statistical models used to derive the results of experimental analyses are of incredible scientific value and are essential information for analysis preservation and reuse. In this paper, we make the scientific case for systematically publishing the full statistical models and discuss the technical developments that make this practical. By means of a variety of physics cases – including parton distribution functions, Higgs boson measurements, effective field theory interpretations, direct searches for new physics, heavy flavor physics, direct dark matter detection, world averages, and beyond the Standard Model global fits – we illustrate how detailed information on the statistical modelling can enhance the short- and long-term impact of experimental results.  
  Address [Cranmer, Kyle; Held, Alexander] NYU, New York, NY 10003 USA, Email: kyle.cranmer@nyu.edu;  
  Corporate Author Thesis  
  Publisher Scipost Foundation Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2542-4653 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000807448000032 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5255  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva