|   | 
Details
   web
Records
Author Amarilo, K.M.; Ferreira Filho, M.B.; Araujo Filho, A.A.; Reis, J.A.A.S.
Title Gravitational waves effects in a Lorentz-violating scenario Type Journal Article
Year (down) 2024 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 855 Issue Pages 138785 - 7pp
Keywords Gravitational waves; Lorentz symmetry breaking; Polarization states; Quadrupole term
Abstract This paper focuses on how the production and polarization of gravitational waves are affected by spontaneous Lorentz symmetry breaking, which is driven by a self-interacting vector field. Specifically, we examine the impact of a smooth quadratic potential and a non-minimal coupling, discussing the constraints and causality features of the linearized Einstein equation. To analyze the polarization states of a plane wave, we consider a fixed vacuum expectation value (VEV) of the vector field. Remarkably, we verify that a space-like background vector field modifies the polarization plane and introduces a longitudinal degree of freedom. In order to investigate the Lorentz violation effect on the quadrupole formula, we use the modified Green function. Finally, we show that the space-like component of the background field leads to a third-order time derivative of the quadrupole moment, and the bounds for the Lorentz-breaking coefficients are estimated as well.
Address [Amarilo, K. M.; Ferreira Filho, M. B.] Univ Estado Rio de Janeiro, Dep Fis Nucl & Altas Energias, Inst Fis, Rua Sao Francisco Xavier 524, BR-20559900 Rio De Janeiro, RJ, Brazil, Email: kevin.amarilo@cern.ch;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:001257664300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6168
Permanent link to this record
 

 
Author Fernandez Navarro, M.; King, S.F.; Vicente, A.
Title Tri-unification: a separate SU(5) for each fermion family Type Journal Article
Year (down) 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 130 - 32pp
Keywords Grand Unification; Theories of Flavour
Abstract In this paper we discuss SU(5)3 with cyclic symmetry as a possible grand unified theory (GUT). The basic idea of such a tri-unification is that there is a separate SU(5) for each fermion family, with the light Higgs doublet(s) arising from the third family SU(5), providing a basis for charged fermion mass hierarchies. SU(5)3 tri-unification reconciles the idea of gauge non-universality with the idea of gauge coupling unification, opening the possibility to build consistent non-universal descriptions of Nature that are valid all the way up to the scale of grand unification. As a concrete example, we propose a grand unified embedding of the tri-hypercharge model \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{U}}{\left(1\right)}_{Y}<^>{3}$$\end{document} based on an SU(5)3 framework with cyclic symmetry. We discuss a minimal tri-hypercharge example which can account for all the quark and lepton (including neutrino) masses and mixing parameters. We show that it is possible to unify the many gauge couplings into a single gauge coupling associated with the cyclic SU(5)3 gauge group, by assuming minimal multiplet splitting, together with a set of relatively light colour octet scalars. We also study proton decay in this example, and present the predictions for the proton lifetime in the dominant e+pi 0 channel.
Address [Navarro, Mario Fernandez; King, Stephen F.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, England, Email: Mario.FernandezNavarro@glasgow.ac.uk;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001256025400004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6171
Permanent link to this record
 

 
Author Chu, X.Y.; Garani, R.; Garcia-Cely, C.; Hambye, T.
Title Dark matter bound-state formation in the Sun Type Journal Article
Year (down) 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 045 - 32pp
Keywords Models for Dark Matter; Specific BSM Phenomenology; Neutrino Interactions; Early Universe Particle Physics
Abstract The Sun may capture asymmetric dark matter (DM), which can subsequently form bound-states through the radiative emission of a sub-GeV scalar. This process enables generation of scalars without requiring DM annihilation. In addition to DM capture on nucleons, the DM-scalar coupling responsible for bound-state formation also induces capture from self-scatterings of ambient DM particles with DM particles already captured, as well as with DM bound-states formed in-situ within the Sun. This scenario is studied in detail by solving Boltzmann equations numerically and analytically. In particular, we take into consideration that the DM self-capture rates require a treatment beyond the conventional Born approximation. We show that, thanks to DM scatterings on bound-states, the number of DM particles captured increases exponentially, leading to enhanced emission of relativistic scalars through bound-state formation, whose final decay products could be observable. We explore phenomenological signatures with the example that the scalar mediator decays to neutrinos. We find that the neutrino flux emitted can be comparable to atmospheric neutrino fluxes within the range of energies below one hundred MeV. Future facilities like Hyper-K, and direct DM detection experiments can further test such scenario.
Address [Chu, Xiaoyong] Austrian Acad Sci, Inst High Energy Phys, Nikolsdorfer Gasse 18, A-1050 Vienna, Austria, Email: xiaoyong.chu@oeaw.ac.at;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001255993100008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6172
Permanent link to this record
 

 
Author Giarnetti, A.; Herrero-Garcia, J.; Marciano, S.; Meloni, D.; Vatsyayan, D.
Title Neutrino masses from new Weinberg-like operators: phenomenology of TeV scalar multiplets Type Journal Article
Year (down) 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 055 - 37pp
Keywords Baryon/Lepton Number Violation; Multi-Higgs Models
Abstract The unique dimension-5 effective operator, LLHH, known as the Weinberg operator, generates tiny Majorana masses for neutrinos after electroweak spontaneous symmetry breaking. If there are new scalar multiplets that take vacuum expectation values (VEVs), they should not be far from the electroweak scale. Consequently, they may generate new dimension-5 Weinberg-like operators which in turn also contribute to Majorana neutrino masses. In this study, we consider scenarios with one or two new scalars up to quintuplet SU(2) representations. We analyse the scalar potentials, studying whether the new VEVs can be induced and therefore are naturally suppressed, as well as the potential existence of pseudo-Nambu-Goldstone bosons. Additionally, we also obtain general limits on the new scalar multiplets from direct searches at colliders, loop corrections to electroweak precision tests and the W-boson mass.
Address [Giarnetti, Alessio; Marciano, Simone; Meloni, Davide] Univ Roma Tre, Dipartimento Matemat & Fis, Via Vasca Navale 84, I-00146 Rome, Italy, Email: alessio.giarnetti@uniroma3.it;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001255993100006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6173
Permanent link to this record
 

 
Author Belchior, F.M.; Maluf, R.
Title Duality between the Maxwell-Chern-Simons and self-dual models in very special relativity Type Journal Article
Year (down) 2024 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 855 Issue Pages 138794 - 7pp
Keywords Duality; Very special relativity; Maxwell-Chern-Simons theory
Abstract This work investigates the classical and quantum duality between the SIM (1)-Maxwell-Chern-Simons (MCS) model and its self -dual counterpart. Initially, we focus on free -field cases to establish equivalence through two distinct approaches: comparing the equations of motion and utilizing the master Lagrangian method. In both instances, the classical correspondence between the self -dual and MCS dual fields undergoes modifications due to very special relativity (VSR). Specifically, the duality is established when the associated VSR-mass parameters are identical, and the dual field is introduced through a non -local VSR correction. Furthermore, we analyze the duality when the self -dual model is minimally coupled to fermions. As a result, we demonstrate that Thirring-like interactions, corrected for non -local VSR contributions, are included in the MCS model. Additionally, we establish the quantum equivalence of the models by performing a functional integration of the fields and comparing the resulting effective Lagrangians.
Address [Belchior, Fernando M.; Maluf, Roberto, V] Univ Fed Ceara UFC, Dept Fis, Campus Pici,CP 6030, BR-60455760 Fortaleza, CE, Brazil, Email: belchior@fisica.ufc.br
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:001259074700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6174
Permanent link to this record
 

 
Author Giachino, A.; van Hameren, A.; Ziarko, G.
Title A new subtraction scheme at NLO exploiting the privilege of k<sub>T</sub>-factorization Type Journal Article
Year (down) 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue 6 Pages 167 - 39pp
Keywords Higher-Order Perturbative Calculations; Deep Inelastic Scattering or Small-x Physics; Factorization; Renormalization Group
Abstract We present a subtraction method for the calculation of real-radiation integrals at NLO in hybrid k(T)-factorization. The main difference with existing methods for collinear factorization is that we subtract the momentum recoil, occurring due to the mapping from an (n + 1)-particle phase space to an n-particle phase space, from the initial-state momenta, instead of distributing it over the final-state momenta.
Address [Giachino, Alessandro; van Hameren, Andreas; Ziarko, Grzegorz] Polish Acad Sci, Inst Nucl Phys, PL-31342 Krakow, Poland, Email: Alessandro.Giachino@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001254801000006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6175
Permanent link to this record
 

 
Author Escrihuela, F.J.; Flores, L.J.; Miranda, O.G.; Rendon, J.; Sanchez-Velez, R.
Title Examining the sensitivity of FASERν to generalized neutrino interactions Type Journal Article
Year (down) 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 102 - 25pp
Keywords Non-Standard Neutrino Properties; Neutrino Interactions; Electroweak Precision Physics
Abstract We investigate the sensitivity of the FASER nu detector, a novel experimental setup at the LHC, to probe and constrain generalized neutrino interactions (GNI). Employing a comprehensive theoretical framework, we model the effects of generalized neutrino interactions on neutrino-nucleon deep inelastic scattering processes within the FASER nu detector. By considering all the neutrino channels produced at the LHC, we perform a statistical analysis to determine the sensitivity of FASER nu to constrain these interactions. Our results demonstrate that FASER nu can place stringent constraints on the GNI effective couplings. Additionally, we study the relation between GNI and a minimal Leptoquark model where the SM is augmented by a singlet Leptoquark with hypercharge 1/3. We have found that the sensitivities for various combinations of the Leptoquark Yukawa couplings are approximately O(1), particularly when considering a Leptoquark mass in the TeV range.
Address [Escrihuela, F. J.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cientif Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: franesfe@alumni.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001255987500005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6176
Permanent link to this record
 

 
Author Viegas, R.; Roser, J.; Barrientos, L.; Borja-Lloret, M.; Casaña, J.V.; Lopez, J.G.; Jimenez-Ramos, M.C.; Hueso-Gonzalez, F.; Ros, A.; Llosa, G.
Title Characterization of a Compton camera based on the TOFPET2 ASIC Type Journal Article
Year (down) 2023 Publication Radiation Physics and Chemistry Abbreviated Journal Radiat. Phys. Chem.
Volume 202 Issue Pages 110507 - 11pp
Keywords Compton camera; Hadron therapy; LaBr3; PETsys TOFPET2; Silicon photomultipliers
Abstract The use of Compton cameras for medical imaging and its interest as a hadron therapy treatment monitoring has increased in the last decade with the development of silicon photomultipliers. MACACOp is a Compton camera prototype designed and assembled at the IRIS group of IFIC-Valencia. This Compton camera is based on monolithic Lanthanum (III) Bromide crystals and silicon photomultipliers, and employs the novel TOFPET2 ASIC as readout electronics. This system emerged as an alternative to MACACO II prototype, with the aim of improving its limited time resolution. To test the performance of the ASIC in a Compton camera setup, the prototype was characterized, both in laboratory and in-beam. A time resolution of 1.5 ns was obtained after time corrections, which improves greatly the performance of the MACACO II. Moreover, the results obtained at high photon energies demonstrate the ability of the system to obtain 1 mm displacements of the reconstructed spots. The results reinforce the potential of the system as a monitoring device for hadron therapy.
Address [Viegas, R.; Roser, J.; Barrientos, L.; Borja-Lloret, M.; Casana, J., V; Hueso-Gonzalez, F.; Ros, A.; Llosa, G.] CSIC UV, Inst Fis Corpuscular IFIC, Valencia, Spain, Email: Rita.Viegas@ific.uv.es
Corporate Author Thesis
Publisher Pergamon-Elsevier Science Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0969-806x ISBN Medium
Area Expedition Conference
Notes WOS:000870840600006 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5392
Permanent link to this record
 

 
Author Gonzalez-Iglesias, D.; Esperante, D.; Gimeno, B.; Blanch, C.; Fuster-Martinez, N.; Martinez-Reviriego, P.; Martin-Luna, P.; Fuster, J.; Alesini, D.
Title Analysis of the Multipactor Effect in an RF Electron Gun Photoinjector Type Journal Article
Year (down) 2023 Publication IEEE Transactions on Electron Devices Abbreviated Journal IEEE Trans. Electron Devices
Volume 70 Issue 1 Pages 288-295
Keywords Magnetic tunneling; Multipactor effect; photoinjector; RF breakdown; RF gun
Abstract The objective of this work is the evaluation of the risk of suffering a multipactor discharge within an RF electron gun photoinjector. Photoinjectors are a type of source for intense electron beams, which are the main electron source for synchrotron light sources, such as free-electron lasers. The analyzed device consists of 1.6 cells and it has been designed to operate at the S-band. Besides, around the RF gun there is an emittance compensation solenoid, whose magnetic field prevents the growth of the electron beam emittance, and thus the degradation of the properties of the beam. The multipactor analysis is based on a set of numerical simulations by tracking the trajectories of the electron cloud in the cells of the device. To reach this aim, an in-house multipactor code was developed. Specifically, two different cases were explored: with the emittance compensation solenoid assumed to be off and with the emittance compensation solenoid in operation. For both the cases, multipactor simulations were carried out exploring different RF electric field amplitudes. Moreover, for a better understanding of the multipactor phenomenon, the resonant trajectories of the electrons and the growth rate of the electrons population are investigated.
Address [Gonzalez-Iglesias, D.; Esperante, D.; Gimeno, B.; Blanch, C.; Fuster-Martinez, N.; Martinez-Reviriego, P.; Martin-Luna, P.; Fuster, J.] Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, Paterna 46980, Spain, Email: Daniel.Gonzalez-Iglesias@uv.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9383 ISBN Medium
Area Expedition Conference
Notes WOS:000890813600001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5427
Permanent link to this record
 

 
Author Figueroa, D.G.; Florio, A.; Torrenti, F.; Valkenburg, W.
Title CosmoLattice: A modern code for lattice simulations of scalar and gauge field dynamics in an expanding universe Type Journal Article
Year (down) 2023 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.
Volume 283 Issue Pages 108586 - 13pp
Keywords Early universe; Real-time lattice simulations; Gauge -invariant lattice techniques
Abstract This paper describes CosmoGattice, a modern package for lattice simulations of the dynamics of interacting scalar and gauge fields in an expanding universe. CosmoGattice incorporates a series of features that makes it very versatile and powerful: i) it is written in C++ fully exploiting the object oriented programming paradigm, with a modular structure and a clear separation between the physics and the technical details, ii) it is MPI-based and uses a discrete Fourier transform parallelized in multiple spatial dimensions, which makes it specially appropriate for probing scenarios with well -separated scales, running very high resolution simulations, or simply very long ones, iii) it introduces its own symbolic language, defining field variables and operations over them, so that one can introduce differential equations and operators in a manner as close as possible to the continuum, iv) it includes a library of numerical algorithms, ranging from O(delta t(2)) to O(delta t(10)) methods, suitable for simulating global and gauge theories in an expanding grid, including the case of 'self-consistent' expansion sourced by the fields themselves. Relevant observables are provided for each algorithm (e.g. energy densities, field spectra, lattice snapshots) and we note that, remarkably, all our algorithms for gauge theories (Abelian or non-Abelian) always respect the Gauss constraint to machine precision. Program summary Program Title:: CosmoGattice CPC Library link to program files: https://doi .org /10 .17632 /44vr5xssc6 .1 Developer's repository link: http://github .com /cosmolattice /cosmolattice Licensing provisions: MIT Programming language: C++, MPI Nature of problem: The phenomenology of high energy physics in the early universe is typically characterized by non-linear dynamics, which cannot be captured accurately with analytical techniques. In order to fully understand the non-linearities developed in a given scenario, one needs to carry out lattice simulations. A number of public packages for lattice simulations have appeared over the years, but most of them are only capable of simulating scalar fields. However, realistic models of particle physics do contain other kind of field species, such as (Abelian or non-Abelian) gauge fields, whose non-linear dynamics can also play a relevant role in the early universe. Tensor modes representing gravitational waves are also naturally expected in many scenarios. Solution method: CosmoGattice represents a modern code for lattice simulations of scalar-gauge field theories in an expanding universe. It allows for the simulation of the evolution of interacting (singlet) scalar fields, charged scalar fields under U(1) and/or SU(2) gauge groups, and the corresponding associated Abelian and/or non-Abelian gauge fields. From version 1.1 onward, CosmoGattice also allows to simulate the production of gravitational waves. Simulations can be done either in a flat space-time background, or in a homogeneous and isotropic (spatially flat) expanding FLRW background. CosmoGattice provides symplectic integrators, with accuracy ranging from O (delta t(2)) up to O(delta t(10)), to simuate the non-linear dynamics of the appropriate fields in comoving three-dimensional lattices. The code is parallelized with MPI, and uses a discrete Fourier Transform parallelized in multiple spatial dimensions, which makes it a very powerful code for probing physical problems with well-separated scales. Moreover, the code has been designed as a `platform' to implement any system of dynamical equations suitable for discretization on a lattice.
Address [Figueroa, Daniel G.] CSIC, Inst Fis Corpuscular IFIC, Valencia, Spain, Email: f.torrenti@unibas.ch
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0010-4655 ISBN Medium
Area Expedition Conference
Notes WOS:000899506700008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5451
Permanent link to this record