toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author ATLAS Collaboration (Aad, G. et al); Aikot, A.; Amos, K.R.; Aparisi Pozo, J.A.; Bailey, A.J.; Bouchhar, N.; Cabrera Urban, S.; Cantero, J.; Cardillo, F.; Castillo Gimenez, V.; Chitishvili, M.; Costa, M.J.; Didenko, M.; Escobar, C.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gomez Delegido, A.J.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Lacasta, C.; Marti-Garcia, S.; Martinez Agullo, P.; Miralles Lopez, M.; Mitsou, V.A.; Monsonis Romero, L.; Moreno Llacer, M.; Munoz Perez, D.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Rubio Jimenez, A.; Ruiz-Martinez, A.; Sabatini, P.; Saibel, A.; Salt, J.; Sanchez Sebastian, V.; Sayago Galvan, I.; Senthilkumar, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valiente Moreno, E.; Valls Ferrer, J.A.; Varriale, L.; Villaplana Perez, M.; Vos, M. url  doi
openurl 
  Title A search for R-parity-violating supersymmetry in final states containing many jets in pp collisions at √s=13 TeV with the ATLAS detector Type Journal Article
  Year (down) 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages 003 - 46pp  
  Keywords Supersymmetry; Hadron-Hadron Scattering; Jets; Beyond Standard Model  
  Abstract A search for R-parity-violating supersymmetry in final states with high jet multiplicity is presented. The search uses 140 fb(-1) of proton-proton collision data at root s = 13 TeV collected by the ATLAS experiment during Run 2 of the Large Hadron Collider. The results are interpreted in the context of R-parity-violating supersymmetry models that feature prompt gluino-pair production decaying directly to three jets each or decaying to two jets and a neutralino which subsequently decays promptly to three jets. No significant excess over the Standard Model expectation is observed and exclusion limits at the 95% confidence level are extracted. Gluinos with masses up to 1800 GeV are excluded when decaying directly to three jets. In the cascade scenario, gluinos with masses up to 2340 GeV are excluded for a neutralino with mass up to 1250 GeV.  
  Address [Filmer, E. K.; Grant, C. M.; Jackson, P.; Kong, A. X. Y.; Pandya, H. D.; Potti, H.; Ruggeri, T. A.; Ting, E. X. L.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001261438700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6207  
Permanent link to this record
 

 
Author Figueroa, D.G.; Florio, A.; Torrenti, F. url  doi
openurl 
  Title Present and future of Cosmo Lattice Type Journal Article
  Year (down) 2024 Publication Reports on Progress in Physics Abbreviated Journal Rep. Prog. Phys.  
  Volume 87 Issue 9 Pages 094901 - 20pp  
  Keywords early Universe; non-linear dynamics; real-time lattice simulations; cosmology; gauge-invariant lattice techniques; CosmoLattice; gravitational waves  
  Abstract We discuss the present state and planned updates of Cosmo Lattice, a cutting-edge code for lattice simulations of non-linear dynamics of scalar-gauge field theories in an expanding background. We first review the current capabilities of the code, including the simulation of interacting singlet scalars and of Abelian and non-Abelian scalar-gauge theories. We also comment on new features recently implemented, such as the simulation of gravitational waves from scalar and gauge fields. Secondly, we discuss new extensions of C osmo L attice that we plan to release publicly. We comment on new physics modules, which include axion-gauge interactions phi FF , non-minimal gravitational couplings phi R-2 , creation and evolution of cosmic-defect networks, and magnetohydrodynamics. We also discuss new technical features, including evolvers for non-canonical interactions, arbitrary initial conditions, simulations in 2+1 dimensions, and higher-accuracy spatial derivatives.  
  Address [Figueroa, Daniel G.; Torrenti, Francisco] CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain, Email: daniel.figueroa@ific.uv.es;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4885 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001284570700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6219  
Permanent link to this record
 

 
Author Di Gregorio, E.; Staelens, M.; Hosseinkhah, N.; Karimpoor, M.; Liburd, J.; Lim, L.; Shankar, K.; Tuszynski, J.A. url  doi
openurl 
  Title Raman Spectroscopy Reveals Photobiomodulation-Induced α-Helix to β-Sheet Transition in Tubulins: Potential Implications for Alzheimer's and Other Neurodegenerative Diseases Type Journal Article
  Year (down) 2024 Publication Nanomaterials Abbreviated Journal Nanomaterials  
  Volume 14 Issue 13 Pages 1093 - 21pp  
  Keywords proteins; protein dynamics; protein structure; non-invasive therapies; low-level laser therapy; spectroscopy; amide bands; amide I; spectral decomposition  
  Abstract In small clinical studies, the application of transcranial photobiomodulation (PBM), which typically delivers low-intensity near-infrared (NIR) to treat the brain, has led to some remarkable results in the treatment of dementia and several neurodegenerative diseases. However, despite the extensive literature detailing the mechanisms of action underlying PBM outcomes, the specific mechanisms affecting neurodegenerative diseases are not entirely clear. While large clinical trials are warranted to validate these findings, evidence of the mechanisms can explain and thus provide credible support for PBM as a potential treatment for these diseases. Tubulin and its polymerized state of microtubules have been known to play important roles in the pathology of Alzheimer's and other neurodegenerative diseases. Thus, we investigated the effects of PBM on these cellular structures in the quest for insights into the underlying therapeutic mechanisms. In this study, we employed a Raman spectroscopic analysis of the amide I band of polymerized samples of tubulin exposed to pulsed low-intensity NIR radiation (810 nm, 10 Hz, 22.5 J/cm2 dose). Peaks in the Raman fingerprint region (300-1900 cm-1)-in particular, in the amide I band (1600-1700 cm-1)-were used to quantify the percentage of protein secondary structures. Under this band, hidden signals of C=O stretching, belonging to different structures, are superimposed, producing a complex signal as a result. An accurate decomposition of the amide I band is therefore required for the reliable analysis of the conformation of proteins, which we achieved through a straightforward method employing a Voigt profile. This approach was validated through secondary structure analyses of unexposed control samples, for which comparisons with other values available in the literature could be conducted. Subsequently, using this validated method, we present novel findings of statistically significant alterations in the secondary structures of polymerized NIR-exposed tubulin, characterized by a notable decrease in alpha-helix content and a concurrent increase in beta-sheets compared to the control samples. This PBM-induced alpha-helix to beta-sheet transition connects to reduced microtubule stability and the introduction of dynamism to allow for the remodeling and, consequently, refreshing of microtubule structures. This newly discovered mechanism could have implications for reducing the risks associated with brain aging, including neurodegenerative diseases like Alzheimer's disease, through the introduction of an intervention following this transition.  
  Address [Di Gregorio, Elisabetta; Staelens, Michael; Tuszynski, Jack A.] Univ Alberta, Fac Sci, Dept Phys, Edmonton, AB T6G 2E1, Canada, Email: michael.staelens@ific.uv.es  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001269841000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6204  
Permanent link to this record
 

 
Author Mata, R.; Cros, A.; Gimeno, B.; Raboso, D. doi  openurl
  Title Secondary electron emission yield in thick dielectric materials: a comparison between Kelvin probe and capacitive methods Type Journal Article
  Year (down) 2024 Publication Journal of Physics D Abbreviated Journal J. Phys. D  
  Volume 57 Issue 40 Pages 405302 - 9pp  
  Keywords dielectrics; secondary electron emission yield; Multipactor in space devices  
  Abstract The recent high demand of secondary electron emission yield (SEY) measurements in dielectric materials from space industry has driven SEY laboratories to improve their facilities and measurement techniques. SEY determination by the common capacitive method, also known as pulsed method, is well accepted and has given satisfactory results in most cases. Nevertheless, the samples under study must be prepared according to the experimental limitations of the technique, i.e. they should be manufactured separated from the devices representing faithfully the surface state of the own device and be as thin as possible. A method based on the Kelvin probe (KP) is proposed here to obtain the SEY characteristics of electrically floating Platinum, Kapton and Teflon placed over dielectric spacers with thicknesses ranging from 1.6 to 12.1 mm. The results are compared with those of the capacitive method and indicate that KP SEY curves are less sensitive to spacer thickness. An explanation based on the literature is also given. In all, we have established that KP is better suited for the analysis of dielectric samples thicker than 3 mm.  
  Address [Mata, R.; Gimeno, B.] Ciudad Politecn Innovac, Val Space Consortium, Edificio 8G,Acceso B,Planta B, Valencia 46022, Spain, Email: rafael.mata@uv.es  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001269188200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6203  
Permanent link to this record
 

 
Author Lessa, A.; Sanz, V. url  doi
openurl 
  Title Going beyond Top EFT Type Journal Article
  Year (down) 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 04 Issue 4 Pages 107 - 29pp  
  Keywords SMEFT; Dark Matter at Colliders; Supersymmetry  
  Abstract We present a new way to interpret Top Standard Model measurements going beyond the SMEFT framework. Instead of the usual paradigm in Top EFT, where the main effects come from tails in momenta distributions, we propose an interpretation in terms of new physics which only shows up at loop-level. The effects of these new states, which can be lighter than required within the SMEFT, appear as distinctive structures at high momenta, but may be suppressed at the tails of distributions. As an illustration of this phenomena, we present the explicit case of a UV model with a Z \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{Z} $$\end{document} 2 symmetry, including a Dark Matter candidate and a top-partner. This simple UV model reproduces the main features of this class of signatures, particularly a momentum-dependent form factor with more structure than the SMEFT. As the new states can be lighter than in SMEFT, we explore the interplay between the reinterpretation of direct searches for colored states and Dark Matter, and Top measurements, made by ATLAS and CMS in the differential t t over bar \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t\overline{t} $$\end{document} final state. We also compare our method with what one would expect using the SMEFT reinterpretation, finding that using the full loop information provides a better discriminating power.  
  Address [Lessa, Andre] Univ Fed ABC, Ctr Ciencias Nat & Humanas, BR-09210580 Santo Andre, SP, Brazil, Email: andre.lessa@ufabc.edu.br  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001205498200004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6108  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva