toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author ANTARES Collaboration (Albert, A. et al); Alves, S.; Carretero, V.; Colomer, M.; Gozzini, R.; Hernandez-Rey, J J.; Khan-Chowdhury, N.R.; Manczak, J.; Pieterse, C.; Salesa Greus, F.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Measurement of the atmospheric nu(e) and nu(mu) energy spectra with the ANTARES neutrino telescope Type Journal Article
  Year (down) 2021 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 816 Issue Pages 136228 - 7pp  
  Keywords Neutrino telescope; Atmospheric neutrinos; ANTARES  
  Abstract This letter presents a combined measurement of the energy spectra of atmospheric nu(e) and nu(mu) in the energy range between similar to 100 GeV and similar to 50 TeV with the ANTARES neutrino telescope. The analysis uses 3012 days of detector livetime in the period 2007-2017, and selects 1016 neutrinos interacting in (or close to) the instrumented volume of the detector, yielding shower-like events (mainly from nu(e) + (nu) over bar (e) charged current plus all neutrino neutral current interactions) and starting track events (mainly from nu(mu) + (nu) over bar (mu) charged current interactions). The contamination by atmospheric muons in the final sample is suppressed at the level of a few per mill by different steps in the selection analysis, including a Boosted Decision Tree classifier. The distribution of reconstructed events is unfolded in terms of electron and muon neutrino fluxes. The derived energy spectra are compared with previous measurements that, above 100 GeV, are limited to experiments in polar ice and, for nu(mu), to Super-Kamiokande.  
  Address [Albert, A.; Drouhin, D.; Huang, F.; Organokov, M.; Pradier, T.] Univ Strasbourg, CNRS, IPHC, UMR 7178, F-67000 Strasbourg, France, Email: spurio@bo.infn.it;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000647421500082 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4818  
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Alves, S.; Carretero, V.; Colomer, M.; Hernandez-Rey, J.J.; Khan-Chowdhury, N.R.; Manczak, J.; Pieterse, C.; Salesa Greus, F.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Search for Neutrinos from the Tidal Disruption Events AT2019dsg and AT2019fdr with the ANTARES Telescope Type Journal Article
  Year (down) 2021 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume 920 Issue 1 Pages 50 - 6pp  
  Keywords  
  Abstract On 2019 October 1, the IceCube Collaboration detected a muon track neutrino with a high probability of being of astrophysical origin, IC191001A. After a few hours, the tidal disruption event (TDE) AT2019dsg, observed by the Zwicky Transient Facility (ZTF), was indicated as the most likely counterpart of the IceCube track. More recently, the follow-up campaign of the IceCube alerts by ZTF suggested a second TDE, AT2019fdr, as a promising counterpart of another IceCube muon track candidate, IC200530A, detected on 2020 May 30. Here, these intriguing associations are followed-up by searching for neutrinos in the ANTARES detector from the directions of AT2019dsg and AT2019fdr using a time-integrated approach. As no significant evidence for space clustering is found in the ANTARES data, upper limits on the one-flavor neutrino flux and fluence are set.  
  Address [Albert, A.; Drouhin, D.; Huang, F.; Organokov, M.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Email: giulia.illuminati3@unibo.it  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000706478500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5001  
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Colomer, M.; Gozzini, R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Manczak, J.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Search for neutrino counterparts of gravitational-wave events detected by LIGO and Virgo during run O2 with the ANTARES telescope Type Journal Article
  Year (down) 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 80 Issue 5 Pages 487 - 9pp  
  Keywords  
  Abstract An offline search for a neutrino counterpart to gravitational -wave (GW) events detected during the second observation run (02) of Advanced-LIGO and Advanced Virgo performed with ANTARES data is presented. In addition to the search for long tracks induced by pp, (17i,) charged current interactions, a search for showering events induced by interactions of neutrinos of any flavour is conducted. The severe spatial and time coincidence provided by the gravitational -wave alert allows regions above the detector horizon to be probed, extending the ANTARES sensitivity over the entire sky. The results of this all -neutrino -flavour and all -sky time dependent analysis are presented. The search for prompt neutrino emission within 500 s around the time of six GW events yields no neutrino counterparts. Upper limits on the neutrino spectral fluence and constraints on the isotropic energy radiated via high-energy neutrinos (from a few TeV to a few tens of PeV) are set for each GW event analysed.  
  Address [Albert, A.; Drouhin, D.; Ruiz, R. Gracia; Huang, F.; Organokov, M.; Pradier, T.] Univ Strasbourg, CNRS, IPHC, UMR 7178, F-67000 Strasbourg, France, Email: mcolomer@apc.in2p3.fr  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000538067700002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4424  
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Colomer, M.; Gozzini, R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Manczak, J.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Search for dark matter towards the Galactic Centre with 11 years of ANTARES data Type Journal Article
  Year (down) 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 805 Issue Pages 135439 - 6pp  
  Keywords Dark matter indirect detection; Neutrino telescope; Galactic Centre; ANTARES  
  Abstract Neutrino detectors participate in the indirect search for the fundamental constituents of dark matter (DM) in form of weakly interacting massive particles (WIMPs). In WIMP scenarios, candidate DM particles can pair-annihilate into Standard Model products, yielding considerable fluxes of high-energy neutrinos. A detector like ANTARES, located in the Northern Hemisphere, is able to perform a complementary search looking towards the Galactic Centre, where a high density of dark matter is thought to accumulate. Both this directional information and the spectral features of annihilating DM pairs are entered into an unbinned likelihood method to scan the data set in search for DM-like signals in ANTARES data. Results obtained upon unblinding 3170 days of data reconstructed with updated methods are presented, which provides a larger, and more accurate, data set than a previously published result using 2101 days. A non-observation of dark matter is converted into limits on the velocity-averaged cross section for WIMP pair annihilation.  
  Address [Albert, A.; Drouhin, D.; Ruiz, R. Gracia; Organokov, M.; Pradier, T.] Univ Strasbourg, CNRS, IPHC, UMR 7178, F-67000 Strasbourg, France, Email: srgozzini@km3net.de  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000541379800026 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4439  
Permanent link to this record
 

 
Author ANTARES and IceCube Collaborations (Albert, A. et al); Colomer, M.; Gozzini, R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Manczak, J.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title ANTARES and IceCube Combined Search for Neutrino Point-like and Extended Sources in the Southern Sky Type Journal Article
  Year (down) 2020 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume 892 Issue 2 Pages 92 - 12pp  
  Keywords  
  Abstract A search for point-like and extended sources of cosmic neutrinos using data collected by the ANTARES and IceCube neutrino telescopes is presented. The data set consists of all the track-like and shower-like events pointing in the direction of the Southern Sky included in the nine-year ANTARES point-source analysis, combined with the throughgoing track-like events used in the seven-year IceCube point-source search. The advantageous field of view of ANTARES and the large size of IceCube are exploited to improve the sensitivity in the Southern Sky by a factor of similar to 2 compared to both individual analyses. In this work, the Southern Sky is scanned for possible excesses of spatial clustering, and the positions of preselected candidate sources are investigated. In addition, special focus is given to the region around the Galactic Center, whereby a dedicated search at the location of SgrA* is performed, and to the location of the supernova remnant RXJ 1713.7-3946. No significant evidence for cosmic neutrino sources is found, and upper limits on the flux from the various searches are presented.  
  Address [Albert, A.; Drouhin, D.; Ruiz, R. Gracia; Organokov, M.; Pradier, T.] Univ Strasbourg, CNRS, IPHC, UMR 7178, F-67000 Strasbourg, France  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000570144200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4532  
Permanent link to this record
 

 
Author ANTARES and IceCube Collaborations (Albert, A. et al); Colomer, M.; Gozzini, R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Manczak, J.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Combined search for neutrinos from dark matter self-annihilation in the Galactic Center with ANTARES and IceCube Type Journal Article
  Year (down) 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 102 Issue 8 Pages 082002 - 13pp  
  Keywords  
  Abstract We present the results of the first combined dark matter search targeting the Galactic Center using the ANTARES and IceCube neutrino telescopes. For dark matter particles with masses from 50 to 1000 GeV, the sensitivities on the self-annihilation cross section set by ANTARES and IceCube are comparable, making this mass range particularly interesting for a joint analysis. Dark matter self-annihilation through the tau(+)tau(-) , mu(+)mu(-) , b (b) over bar, and W+W- channels is considered for both the Navarro-Frenk-White and Burkert halo profiles. In the combination of 2101.6 days of ANTARES data and 1007 days of IceCube data, no excess over the expected background is observed. Limits on the thermally averaged dark matter annihilation cross section <sigma(A)upsilon > are set. These limits present an improvement of up to a factor of 2 in the studied dark matter mass range with respect to the individual limits published by both collaborations. When considering dark matter particles with a mass of 200 GeV annihilating through the tau(+)tau(-)channel, the value obtained for the limit is 7.44 x 10(-24) cm(3) s(-1 )for the Navarro-Frenk-White halo profile. For the purpose of this joint analysis, the model parameters and the likelihood are unified, providing a benchmark for forthcoming dark matter searches performed by neutrino telescopes.  
  Address [Albert, A.; Drouhin, D.; Ruiz, R. Gracia; Huang, F.; Organokov, M.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000582565500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4581  
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Colomer, M.; Gozzini, R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Manczak, J.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Observation of the cosmic ray shadow of the Sun with the ANTARES neutrino telescope Type Journal Article
  Year (down) 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 102 Issue 12 Pages 122007 - 7pp  
  Keywords  
  Abstract The ANTARES detector is an undersea neutrino telescope in the Mediterranean Sea. The search for pointlike neutrino sources is one of the main goals of the ANTARES telescope, requiring a reliable method to evaluate the detector angular resolution and pointing accuracy. This work describes the study of the Sun “shadow” effect with the ANTARES detector. The shadow is the deficit in the atmospheric muon flux in the direction of the Sun caused by the absorption of the primary cosmic rays. This analysis is based on the data collected between 2008 and 2017 by the ANTARES telescope. The observed statistical significance of the Sun shadow detection is 3.7 sigma, with an estimated angular resolution of 0.59 degrees +/- 0.10 degrees for downward-going muons. The pointing accuracy is found to be consistent with the expectations and no evidence of systematic pointing shifts is observed.  
  Address [Albert, A.; Drouhin, D.; Huang, F.; Organokov, M.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Email: andrey.romanov@ge.infn.it;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000602850800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4663  
Permanent link to this record
 

 
Author ANTARES, IceCube, LIGO and Virgo Collaborations (Albert, A. et al); Barrios-Marti, J.; Coleiro, A.; Colomer, M.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Lotze, M.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube Type Journal Article
  Year (down) 2019 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume 870 Issue 2 Pages 134 - 16pp  
  Keywords gravitational waves; neutrinos  
  Abstract Astrophysical sources of gravitational waves, such as binary neutron star and black hole mergers or core-collapse supernovae, can drive relativistic outflows, giving rise to non-thermal high-energy emission. High-energy neutrinos are signatures of such outflows. The detection of gravitational waves and high-energy neutrinos from common sources could help establish the connection between the dynamics of the progenitor and the properties of the outflow. We searched for associated emission of gravitational waves and high-energy neutrinos from astrophysical transients with minimal assumptions using data from Advanced LIGO from its first observing run O1, and data from the ANTARES and IceCube neutrino observatories from the same time period. We focused on candidate events whose astrophysical origins could not be determined from a single messenger. We found no significant coincident candidate, which we used to constrain the rate density of astrophysical sources dependent on their gravitational-wave and neutrino emission processes.  
  Address [Albert, A.; Drouhin, D.; Ruiz, R. Gracia; Organokov, M.; Pradier, T.; Maris, I. C.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000456063900015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3883  
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Barrios-Marti, J.; Coleiro, A.; Colomer, M.; Gozzini, R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Lotze, M.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Measuring the atmospheric neutrino oscillation parameters and constraining the 3+1 neutrino model with ten years of ANTARES data Type Journal Article
  Year (down) 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue 6 Pages 113 - 23pp  
  Keywords Neutrino Detectors and Telescopes (experiments); Oscillation  
  Abstract The ANTARES neutrino telescope has an energy threshold of a few tens of GeV. This allows to study the phenomenon of atmospheric muon neutrino disappearance due to neutrino oscillations. In a similar way, constraints on the 3+1 neutrino model, which foresees the existence of one sterile neutrino, can be inferred. Using data collected by the ANTARES neutrino telescope from 2007 to 2016, a new measurement of m 2 and (23) has been performed which is consistent with world best-fit values and constraints on the 3+1 neutrino model have been derived.  
  Address [Drouhin, D.; Ruiz, R. Gracia; Organokov, M.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Email: salvadori@cppm.in2p3.fr  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000472922700002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4066  
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Barrios-Marti, J.; Coleiro, A.; Colomer, M.; Gozzini, R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Lotze, M.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title ANTARES Neutrino Search for Time and Space Correlations with IceCube High-energy Neutrino Events Type Journal Article
  Year (down) 2019 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume 879 Issue 2 Pages 108 - 8pp  
  Keywords astroparticle physics; neutrinos  
  Abstract In past years the IceCube Collaboration has reported the observation of astrophysical high-energy neutrino events in several analyses. Despite compelling evidence for the first identification of a neutrino source, TXS 0506+056, the origin of the majority of these events is still unknown. In this paper, we search for a possible transient origin of the IceCube astrophysical events using neutrino events detected by the ANTARES telescope. The arrival time and direction of 6894 track-like and 160 shower-like events detected over 2346 days of livetime are examined to search for coincidences with 54 IceCube high-energy track-like neutrino events, by means of a maximum likelihood method. No significant correlation is observed and upper limits on the one-flavor neutrino fluence from the direction of the IceCube candidates are derived. The nonobservation of time and space correlation within the time window of 0.1 days with the two most energetic IceCube events constrains the spectral index of a possible point-like transient neutrino source to be harder than -2.3 and -2.4 for each event, respectively.  
  Address [Albert, A.; Drouhin, D.; Gracia Ruiz, R.; Organokov, M.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Email: giulia.illuminati@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000475388900003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4096  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva