toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Beltran Jimenez, J.; Delhom, A.; Olmo, G.J.; Orazi, E. url  doi
openurl 
  Title Born-Infeld gravity: Constraints from light-by-light scattering and an effective field theory perspective Type Journal Article
  Year (up) 2021 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 820 Issue Pages 136479 - 6pp  
  Keywords  
  Abstract By using a novel technique that establishes a correspondence between general relativity and metric-affine theories based on the Ricci tensor, we are able to set stringent constraints on the free parameter of Born-Infeld gravity from the ones recently obtained for Born-Infeld electrodynamics by using light-by light scattering data from ATLAS. We also discuss how these gravity theories plus matter fit within an effective field theory framework.  
  Address [Beltran Jimenez, Jose] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain, Email: jose.beltran@usal.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000701707400005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4978  
Permanent link to this record
 

 
Author Benisty, D.; Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Singularity-Free and Cosmologically Viable Born-Infeld Gravity with Scalar Matter Type Journal Article
  Year (up) 2021 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel  
  Volume 13 Issue 11 Pages 2108 - 24pp  
  Keywords metric-affine gravity; non-singular cosmologies; born-infeld gravity; observational constraints; scalar fields  
  Abstract The early cosmology, driven by a single scalar field, both massless and massive, in the context of Eddington-inspired Born-Infeld gravity, is explored. We show the existence of nonsingular solutions of bouncing and loitering type (depending on the sign of the gravitational theory's parameter, epsilon) replacing the Big Bang singularity, and discuss their properties. In addition, in the massive case, we find some new features of the cosmological evolution depending on the value of the mass parameter, including asymmetries in the expansion/contraction phases, or a continuous transition between a contracting phase to an expanding one via an intermediate loitering phase. We also provide a combined analysis of cosmic chronometers, standard candles, BAO, and CMB data to constrain the model, finding that for roughly |epsilon|& LSIM;5 & BULL;10-8m2 the model is compatible with the latest observations while successfully removing the Big Bang singularity. This bound is several orders of magnitude stronger than the most stringent constraints currently available in the literature.  
  Address [Benisty, David] Univ Cambridge, Ctr Math Sci, DAMTP, Wilberforce Rd, Cambridge CB3 0WA, England, Email: benidav@post.bgu.ac.il;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000726717400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5040  
Permanent link to this record
 

 
Author Guerrero, M.; Mora-Perez, G.; Olmo, G.J.; Orazi, E.; Rubiera-Garcia, D. url  doi
openurl 
  Title Charged BTZ-type solutions in Eddington-inspired Born-Infeld gravity Type Journal Article
  Year (up) 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 11 Issue 11 Pages 025 - 23pp  
  Keywords modified gravity; Exact solutions; black holes and black hole thermodynamics in GR and beyond; Wormholes  
  Abstract We construct an axially symmetric solution of Eddington-inspired Born-Infeld gravity coupled to an electromagnetic field in 2 + 1 dimensions including a (negative) cosmological constant term. This is achieved by using a recently developed mapping procedure that allows to generate solutions in certain families of metric-affine gravity theories starting from a known seed solution of General Relativity, which in the present case corresponds to the electrically charged Banados-Teitelboim-Zanelli (BTZ) solution. We discuss the main features of the new configurations, including the modifications to the ergospheres and horizons, the emergence of wormhole structures, and the consequences for the regularity (or not) of these space-times via geodesic completeness.  
  Address [Guerrero, Merce; Rubiera-Garcia, Diego] Univ Complutense Madrid, Dept Fis Teor, Plaza Ciencias S-N, E-28040 Madrid, Spain, Email: merguerr@ucm.es;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000727716400006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5050  
Permanent link to this record
 

 
Author Rosa, J.L.; Lobo, F.S.N.; Olmo, G.J. url  doi
openurl 
  Title Weak-field regime of the generalized hybrid metric-Palatini gravity Type Journal Article
  Year (up) 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 104 Issue 12 Pages 124030 - 11pp  
  Keywords  
  Abstract In this work we explore the dynamics of the generalized hybrid metric-Palatini theory of gravity in the weak-field, slow-motion regime. We start by introducing the equivalent scalar-tensor representation of the theory, which contains two scalar degrees of freedom, and perform a conformal transformation to the Einstein frame. Linear perturbations of the metric in a Minkowskian background are then studied for the metric and both scalar fields. The effective Newton constant and the PPN parameter. of the theory are extracted after transforming back to the (original) Jordan frame. Two particular cases where the general method ceases to be applicable are approached separately. A comparison of these results with observational constraints is then used to impose bounds on the masses and coupling constants of the scalar fields.  
  Address [Rosa, Joao Luis] Univ Tartu, Inst Phys, W Ostwaldi 1, EE-50411 Tartu, Estonia, Email: joaoluis92@gmail.com;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000762071800011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5142  
Permanent link to this record
 

 
Author Magalhaes, R.B.; Crispino, L.C.B.; Olmo, G.J. url  doi
openurl 
  Title Compact objects in quadratic Palatini gravity generated by a free scalar field Type Journal Article
  Year (up) 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 105 Issue 6 Pages 064007 - 15pp  
  Keywords  
  Abstract We study the correspondence that connects the space of solutions of general relativity (GR) with that of Ricci-based gravity theories (RBGs) of the f(R, Q) type in the metric-affinc formulation, where Q = R(mu nu)R(mu nu). We focus on the case of scalar matter and show that when one considers a free massless scalar in the GR frame, important simplifications arise that allow one to establish the correspondence for arbitrary f (R, Q) Lagrangian. We particularize the analysis to a quadratic f (R, Q) theory and use the spherically symmetric, static solution of Jannis-Newman-Winicour as seed to generate new compact objects in our target theory. We find that two different types of solutions emerge, one representing naked singularities and another corresponding to asymmetric wormholes with bounded curvature scalars everywhere. The latter solutions, nonetheless, are geodesically incomplete.  
  Address [Magalhaes, Renan B.; Crispino, Luis C. B.] Univ Fed Para, Programa Posgrad Fis, BR-66075110 Belem, Para, Brazil, Email: renan.magalhaes@icen.ufpa.br;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000767103000006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5171  
Permanent link to this record
 

 
Author Afonso, V.I.; Mora-Perez, G.; Olmo, G.J.; Orazi, E.; Rubiera-Garcia, D. url  doi
openurl 
  Title An infinite class of exact rotating black hole metrics of modified gravity Type Journal Article
  Year (up) 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 052 - 14pp  
  Keywords Exact solutions; black holes and black hole thermodynamics in GR and beyond; Gauss-Bonnet-Lovelock-Horndeski-Palatini etc gravity theories; modified gravity  
  Abstract We build an infinite class of exact axisymmetric solutions of a metric-affine gravity theory, namely, Eddington-inspired Born-Infeld gravity, coupled to an anisotropic fluid as a matter source. The solution-generating method employed is not unique of this theory but can be extended to other Ricci-Based Gravity theories (RBGs), a class of theories built out of contractions of the Ricci tensor with the metric. This method exploits a correspondence between the space of solutions of General Relativity and that of RBGs, and is independent of the symmetries of the problem. For the particular case in which the fluid is identified with non-linear electromagnetic fields we explicitly derive the corresponding axisymmetric solutions. Finally, we use this result to work out the counterpart of the Kerr-Newman black hole when Maxwell electrodynamics is set on the metric-affine side. Our results open up an exciting new avenue for testing new gravitational phenomenology in the fields of gravitational waves and shadows out of rotating black holes.  
  Address [Afonso, Victor, I] Univ Fed Campina Grande, Unidade Academ Fis, BR-58429900 Campina Grande, Paraiba, Brazil, Email: viafonso@df.ufcg.edu.br;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000776994500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5185  
Permanent link to this record
 

 
Author Delhom, A.; Nascimento, J.R.; Olmo, G.J.; Petrov, A.Y.; Porfirio, P.J. url  doi
openurl 
  Title Radiative corrections in metric-affine bumblebee model Type Journal Article
  Year (up) 2022 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 826 Issue Pages 136932 - 9pp  
  Keywords  
  Abstract We consider the metric-affine formulation of bumblebee gravity, derive the field equations, and show that the connection can be written as Levi-Civita of a disformally related metric in which the bumblebee field determines the disformal part. As a consequence, the bumblebee field gets coupled to all the other matter fields present in the theory, potentially leading to nontrivial phenomenological effects. To explore this issue we compute the weak-field limit and study the resulting effective theory. In this scenario, we couple scalar and spinorial matter to the effective metric which, besides the zeroth-order Minkowskian contribution, also has the vector field contributions of the bumblebee, and show that it is renormalizable at one-loop level. From our analysis it also follows that the non-metricity of this theory is determined by the gradient of the bumblebee field, and that it can acquire a vacuum expectation value due to the contribution of the bumblebee field.  
  Address [Delhom, Adria; Olmo, Gonzalo J.] Univ Valencia, Ctr Mixto, Dept Fis Teor, CSIC, Valencia 46100, Spain, Email: adria.delhom@uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000792884500005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5229  
Permanent link to this record
 

 
Author Boudet, S.; Bombacigno, F.; Olmo, G.J.; Porfirio, P. url  doi
openurl 
  Title Quasinormal modes of Schwarzschild black holes in projective invariant Chern-Simons modified gravity Type Journal Article
  Year (up) 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 05 Issue 5 Pages 032 - 29pp  
  Keywords Gauss-Bonnet-Lovelock-Horndeski-Palatini etc gravity theories; Exact solutions; black holes and black hole thermodynamics in GR and beyond  
  Abstract We generalize the Chern-Simons modified gravity to the metric-affine case and impose projective invariance by supplementing the Pontryagin density with homothetic curvature terms which do not spoil topologicity. The latter is then broken by promoting the coupling of the Chern-Simons term to a (pseudo)-scalar field. The solutions for torsion and nonmetricity are derived perturbatively, showing that they can be iteratively obtained from the background fields. This allows us to describe the dynamics for the metric and the scalar field perturbations in a self-consistent way, and we apply the formalism to the study of quasi normal modes in a Schwarzschild black hole background. Unlike in the metric formulation of this theory, we show that the scalar field is endowed with dynamics even in the absence of its kinetic term in the action. Finally, using numerical methods we compute the quasinormal frequencies and characterize the late-time power law tails for scalar and metric perturbations, comparing the results with the outcomes of the purely metric approach.  
  Address [Boudet, S.] Univ Trento, Dipartimento Fis, Via Sommar 14, I-38123 Povo, TN, Italy, Email: simon.boudet@unitn.it;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000804493000004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5238  
Permanent link to this record
 

 
Author Guerrero, M.; Olmo, G.J.; Rubiera-Garcia, D.; Saez-Chillon Gomez, D. url  doi
openurl 
  Title Light ring images of double photon spheres in black hole and wormhole spacetimes Type Journal Article
  Year (up) 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 105 Issue 8 Pages 084057 - 16pp  
  Keywords  
  Abstract The silhouette of a black hole having a critical curve (an unstable bound photon orbit) when illuminated by an optically thin accretion disk whose emission is confined to the equatorial plane shows a distinctive central brightness depression (the shadow) whose outer edge consists of a series of strongly lensed, selfsimilar rings superimposed with the disk???s direct emission. While the size and shape of the critical curve depend only on the background geometry, the pattern of bright and dark regions (including the size and depth of the shadow itself) in the image is strongly influenced by the (astro)physics of the accretion disk. This aspect makes it difficult to extract clean and clear observational discriminators between the Kerr black hole and other compact objects. In the presence of a second critical curve, however, observational differences become apparent. In this work we shall consider some spherically symmetric black hole and wormhole geometries characterized by the presence of a second critical curve, via a uniparametric family of extensions of the Schwarzschild metric. By assuming three toy models of geometrically thin accretion disks, we show the presence of additional light rings in the intermediate region between the two critical curves. The observation of such rings could represent a compelling evidence for the existence of black hole mimickers having multiple critical curves.  
  Address [Guerrero, Merce; Rubiera-Garcia, Diego] Univ Complutense Madrid, Dept Fis Teor, E-28040 Madrid, Spain, Email: merguerr@ucm.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000810908800018 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5261  
Permanent link to this record
 

 
Author Afonso, V.I.; Bejarano, C.; Ferraro, R.; Olmo, G.J. url  doi
openurl 
  Title Determinantal Born-Infeld coupling of gravity and electromagnetism Type Journal Article
  Year (up) 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 105 Issue 8 Pages 084067 - 11pp  
  Keywords  
  Abstract We study a Born-Infeld inspired model of gravity and electromagnetism in which both types of fields are treated on an equal footing via a determinantal approach in a metric-aft me formulation. Though this formulation is a priori in conflict with the postulates of metric theories of gravity, we find that the resulting equations can also be obtained from an action combining the Einstein-Hilbert action with a minimally coupled nonlinear electrodynamics. As an example, the dynamics is solved for the charged static black hole.  
  Address [Afonso, Victor, I] Univ Fed Campina Grande, Unidade Acad Fis, BR-58429900 Campina Grande, Paraiba, Brazil, Email: viafonso@df.ufcg.edu.br;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000810510200008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5273  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva