|   | 
Details
   web
Records
Author Marzocca, D.; Petcov, S.T.; Romanino, A.; Sevilla, M.C.
Title Nonzero |U_e3| from charged lepton corrections and the atmospheric neutrino mixing angle Type Journal Article
Year (down) 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 073 - 27pp
Keywords Neutrino Physics; CP violation
Abstract After the successful determination of the reactor neutrino mixing angle theta(13) not equal 0.16 not equal 0, a new feature suggested by the current neutrino oscillation data is a sizeable deviation of the atmospheric neutrino mixing angle theta(23) from pi/4. Using the fact that the neutrino mixing matrix U = (UeU nu)-U-dagger, where U-e and U-nu result from the diagonalisation of the charged lepton and neutrino mass matrices, and assuming that U-nu has a i) bimaximal (BM), H) tri-bimaximal (TBM) form, or else Hi) corresponds to the conservation of the lepton charge L' = L-e – L μ- L-tau (LC), we investigate quantitatively what are the minimal forms of U-e, in terms of angles and phases it contains, that can provide the requisite corrections to U-nu so that theta(13), theta(23) and the solar neutrino mixing angle theta(12) have values compatible with the current data. Two possible orderings of the 12 and the 23 rotations in U-e, “standard” and “inverse”, are considered. The results we obtain depend strongly on the type of ordering. In the case of “standard” ordering, in particular, the Dirac CP violation phase delta, present in U, is predicted to have a value in a narrow interval around i) delta similar or equal to pi in the BM (or LC) case, H) delta congruent to 3 pi/2 or pi/2 in the TBM case, the CP conserving values delta = 0, pi, 2 pi being excluded in the TBM case at more than 4 sigma.
Address [Marzocca, David; Petcov, S. T.; Romanino, Andrea] SISSA ISAS, I-34136 Trieste, Italy, Email: dmarzocc@sissa.it
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000321374400073 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1556
Permanent link to this record
 

 
Author Agarwalla, S.K.; Prakash, S.; Sankar, S.U.
Title Resolving the octant of theta(23) with T2K and NOvA Type Journal Article
Year (down) 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 131 - 24pp
Keywords Neutrino Physics; CP violation; Beyond Standard Model
Abstract Preliminary results of MINOS experiment indicate that theta(23) is not maximal. Global fits to world neutrino data suggest two nearly degenerate solutions for theta(23): one in the lower octant (LO: theta(23) < 45 degrees) and the other in the higher octant (HO: theta(23) > 45 degrees). v(mu) -> v(e) oscillations in superbeam experiments are sensitive to the octant and are capable of resolving this degeneracy. We study the prospects of this resolution by the current T2K and upcoming NOvA experiments. Because of the hierarchy-delta(CP) degeneracy and the octant delta(CP) degeneracy, the impact of hierarchy on octant resolution has to be taken into account. As in the case of hierarchy determination, there exist favorable (unfavorable) values of delta(CP) for which octant resolution is easy (challenging). However, for octant resolution the unfavorable delta(CP) values of the neutrino data are favorable for the anti-neutrino data and vice-verse. This is in contrast to the case of hierarchy determination. In this paper, we compute the combined sensitivity of T2K and NOvA to resolve the octant ambiguity. If sin(2)theta(23) – 0.41, then NOvA can rule out all the values of theta(23) in HO at 2 sigma C.L., irrespective of the hierarchy and delta(CP). Addition of T2K data improves the octant sensitivity. If T2K were to have equal neutrino and anti-neutrino runs of 2.5 years each, a 2 sigma resolution of the octant becomes possible provided sin(2) theta(23) <= 0.43 or >= 0.58 for any value of delta(CP).
Address [Agarwalla, Sanjib Kumar] Inst Phys, Sainik Sch Post, Bhubaneswar 751005, Orissa, India, Email: sanjib@iopb.res.in;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000323202900044 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1570
Permanent link to this record
 

 
Author Blennow, M.; Coloma, P.; Donini, A.; Fernandez-Martinez, E.
Title Gain fractions of future neutrino oscillation facilities over T2K and NOvA Type Journal Article
Year (down) 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 159 - 23pp
Keywords Neutrino Physics; CP violation
Abstract We evaluate the probability of future neutrino oscillation facilities to discover leptonic CP violation and/or measure the neutrino mass hierarchy. We study how this probability is affected by positive or negative hints for these observables to be found at T2K and NO nu A. We consider the following facilities: LBNE; T2HK; and the 10 GeV Neutrino Factory (NF10), and show how their discovery probabilities change with the running time of T2K and NO nu A conditioned to their results. We find that, if after 15 years T2K and NO nu A have not observed a 90% CL hint of CP violation, then LBNE and T2HK have less than a 10% chance of achieving a 5 sigma discovery, whereas NF10 still has a similar to 40% chance to do so. Conversely, if T2K and NO nu A have an early 90% CL hint in 5 years from now, T2HK has a rather large chance to achieve a 5 sigma CP violation discovery (75% or 55%, depending on whether the mass hierarchy is known or not). This is to be compared with the 90% (30%) probability that NF10 (LBNE) would have to observe the same signal at 5 sigma. A hierarchy measurement at 5 sigma is achievable at both LBNE and NF10 with more than 90% probability, irrespectively of the outcome of T2K and NO nu A. We also find that if LBNE or a similar very long baseline super-beam is the only next generation facility to be built, then it is very useful to continue running T2K and NO nu A (or at least T2K) beyond their original schedule in order to increase the CP violation discovery chances, given their complementarity.
Address [Blennow, M.] AlbaNova Univ Ctr, KTH Royal Inst Technol, Sch Engn Sci, Dept Theoret Phys, S-10691 Stockholm, Sweden, Email: emb@kth.se;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000323202900072 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1571
Permanent link to this record
 

 
Author Davidson, S.; Felipe, R.G.; Serodio, H.; Silva, J.P.
Title Baryogenesis through split Higgsogenesis Type Journal Article
Year (down) 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 11 Issue 11 Pages 100 - 22pp
Keywords Higgs Physics; CP violation
Abstract We study the cosmological evolution of asymmetries in the two-Higgs doublet extension of the Standard Model, prior to the electroweak phase transition. If Higgs flavour-exchanging interactions are sufficiently slow, then a relative asymmetry among the Higgs doublets corresponds to an effectively conserved quantum number. Since the magnitude of the Higgs couplings depends on the choice of basis in the :Higgs doublet space, we attempt to formulate basis-independent out-of-equilibrium conditions. We show that an initial asymmetry between the fliggs scalars, which could be generated by GP violation in the :Higgs sector, will be transformed into a baryon asymmetry by the sphalerons, without the need of B – L violation. This novel mechanism of baryogenesis through (split) Higgsogenesis is exemplified with simple scenarios based on the out-of-equilibrium decay of heavy singlet scalar fields into the illiggs doublets.
Address [Davidson, Sacha] Univ Lyon 1, IPNL, CNRS, IN2P3, F-69622 Villeurbanne, France, Email: s.davidson@ipnl.in2p3.fr;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000327092700006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1651
Permanent link to this record
 

 
Author Kittel, O.; Pilaftsis, A.
Title CP violation in correlated production and decay of unstable particles Type Journal Article
Year (down) 2012 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B
Volume 856 Issue 3 Pages 682-697
Keywords EPR correlation; Resonant CP violation; Collider phenomenology
Abstract We study resonant CP-violating Einstein-Podolsky-Rosen correlations that may take place in the production and decay of unstable scalar particles at high-energy colliders. We show that as a consequence of unitarity and CPT invariance of the S-matrix, in 2 -> 2 scatterings mediated by mixed scalar particles, at least three linearly independent decay matrices associated with the unstable scalar states are needed to obtain non-zero CP-odd observables that are also odd under C-conjugation. Instead, for the correlated production and decay of two unstable particle systems in 2 -> 4 processes, we find that only two independent decay matrices are sufficient to induce a net non-vanishing CP-violating phenomenon. As an application of this theorem, we present numerical estimates of CP asymmetries for the correlated production and decay of supersymmetric scalar top anti-top pairs at the LHC, and demonstrate that these could reach values of order one. As a byproduct of our analysis, we develop a novel spinorial trace technique, which enables us to efficiently evaluate lengthy expressions of squared amplitudes describing the resonant scalar transitions.
Address [Kittel, Olaf] Univ Granada, Dept Fis Teor & Cosmos, E-18071 Granada, Spain, Email: kittel@th.physik.uni-bonn.de
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0550-3213 ISBN Medium
Area Expedition Conference
Notes WOS:000300028200004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 892
Permanent link to this record
 

 
Author Baker, M.J.; Bordes, J.; Hong-Mo, C.; Tsun, T.S.
Title Developing the Framed Standard Model Type Journal Article
Year (down) 2012 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A
Volume 27 Issue 17 Pages 1250087 - 45pp
Keywords Quantum field theory; CP violation; mixing and fermion masses
Abstract The framed standard model (FSM) suggested earlier, which incorporates the Higgs field and three fermion generations as part of the framed gauge theory (FGT) structure, is here developed further to show that it gives both quarks and leptons hierarchical masses and mixing matrices akin to what is experimentally observed. Among its many distinguishing features which lead to the above results are (i) the vacuum is degenerate under a global su(3) symmetry which plays the role of fermion generations, (ii) the fermion mass matrix is “universal,” rank-one and rotates (changes its orientation in generation space) with changing scale mu, (iii) the metric in generation space is scale-dependent too, and in general nonflat, (iv) the theta-angle term in the quantum chromodynamics (QCD) action of topological origin gets transformed into the CP-violating phase of the Cabibbo-Kobayashi-Maskawa (CKM) matrix for quarks, thus offering at the same time a solution to the strong CP problem.
Address [Baker, Michael J.; Bordes, Jose] Univ Valencia, Ctr Mixto CSIC, Dept Fis Teor, E-46100 Burjassot, Valencia, Spain, Email: michael.baker@uv.es;
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-751x ISBN Medium
Area Expedition Conference
Notes WOS:000305621900002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1061
Permanent link to this record
 

 
Author Agarwalla, S.K.; Li, T.; Rubbia, A.
Title An incremental approach to unravel the neutrino mass hierarchy and CP violation with a long-baseline superbeam for large theta(13) Type Journal Article
Year (down) 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 154 - 32pp
Keywords Neutrino Physics; CP violation
Abstract Recent data from long-baseline neutrino oscillation experiments have provided new information on theta(13), hinting that 0.01 less than or similar to sin(2) 2 theta(13) less than or similar to 0.1 at 2 sigma confidence level. In the near future, further confirmation of this result with high significance will have a crucial impact on the optimization of the future long-baseline neutrino oscillation experiments designed to probe the neutrino mass ordering and leptonic CP violation. In this context, we expound in detail the physics reach of an experimental setup where neutrinos produced in a conventional wide-band beam facility at CERN are observed in a proposed Giant Liquid Argon detector at the Pyhasalmi mine, at a distance of 2290 km. Due to the strong matter effects and the high detection efficiency at both the first and second oscillation maxima, this particular setup would have unprecedented sensitivity to the neutrino mass ordering and leptonic CP violation in the light of the emerging hints of large theta(13). With a 10 to 20 kt 'pilot' detector and just a few years of neutrino beam running, the neutrino mass hierarchy could be determined, irrespective of the true values of delta(CP) and the mass hierarchy, at 3 sigma (5 sigma) confidence level if sin(2) 2 theta(13)(true) = 0.05 (0.1). With the same exposure, we start to have 3 sigma sensitivity to CP violation if sin(2) 2 theta(13)(true) > 0.05, in particular testing maximally CP-violating scenarios at a high confidence level. After optimizing the neutrino and anti-neutrino running fractions, we study the performance of the setup as a function of the exposure, identifying three milestones to have roughly 30%, 50% and 70% coverage in delta(CP) (true) for 3 sigma CP violation discovery. For comparison, we also study the CERN to Slanic baseline of 1540 km. This work nicely demonstrates that an incremental program, staged in terms of the exposure, can achieve the desired physics goals within a realistically feasible timescale, and produce significant new results at each stage.
Address [Agarwalla, Sanjib Kumar; Li, Tracey] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: Sanjib.Agarwalla@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000305238600074 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1091
Permanent link to this record
 

 
Author Li, X.Q.; Li, Y.M.; Lu, G.R.; Su, F.
Title B-s(0)-(B)over-bar(s)(0) mixing in a family non-universal Z ' model revisited Type Journal Article
Year (down) 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 049 - 27pp
Keywords Beyond Standard Model; B-Physics; CP violation
Abstract Motivated by the very recent measurements performed at the LHCb and the Tevatron of the B-s(0) – (B) over bar (0)(s) mixing, in this paper we revisit it in a family non-universal Z' model, to check if a simultaneous explanation for all the mixing observables, especially for the like-sign dimuon charge asymmetry observed by the D0 collaboration, could be made in such a specific model. In the first scenario where the Z' boson contributes only to the off-diagonal element M-12(s), it is found that, once the combined constraints from Delta M-s, phi(s) and Delta Gamma(s) are imposed, the model could not explain the measured flavour-specific CP asymmetry a(fs)(s), at least within its 1 sigma ranges. In the second scenario where the NP contributes also to the absorptive part Gamma(s)(12) via tree-level Z'-induced b -> c (c) over bars operators, we find that, with the constraints from Delta M-s, phi(s) and the indirect CP asymmetry in (B) over bar (d) -> J/psi K-S taken into account, the present measured 1 sigma experimental ranges for a(fs)(s) could not be reproduced too. Thus, such a specific Z' model with our specific assumptions could not simultaneously reconcile all the present data on B-s(0) – B-s(0) mixing. Future improved measurements from the LHCb and the proposed superB experiments, especially of the flavour-specific CP asymmetries, are expected to shed light on the issue.
Address [Li, Xin-Qiang; Li, Yan-Min; Lu, Gong-Ru] Henan Normal Univ, Dept Phys, Xinxiang 453007, Henan, Peoples R China, Email: xqli@itp.ac.cn;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000305236000049 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1103
Permanent link to this record
 

 
Author Coloma, P.; Donini, A.; Fernandez-Martinez, E.; Hernandez, P.
Title Precision on leptonic mixing parameters at future neutrino oscillation experiments Type Journal Article
Year (down) 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue 6 Pages 073 - 27pp
Keywords Neutrino Physics; CP violation; Standard Model
Abstract We perform a comparison of the different future neutrino oscillation experiments based on the achievable precision in the determination of the fundamental parameters theta(13) and the CP phase, delta, assuming that theta(13) is in the range indicated by the recent Daya Bay measurement. We study the non-trivial dependence of the error on delta on its true value. When matter effects are small, the largest error is found at the points where CP violation is maximal, and the smallest at the CP conserving points. The situation is different when matter effects are sizable. As a result of this effect, the comparison of the physics reach of different experiments on the basis of the CP discovery potential, as usually done, can be misleading. We have compared various proposed super-beam, beta-beam and neutrino factory setups on the basis of the relative precision of theta(13) and the error on delta. Neutrino factories, both high-energy or low-energy, outperform alternative beam technologies. An ultimate precision on theta(13) below 3% and an error on delta of <= 7 degrees at 1 sigma (1 d.o.f.) can be obtained at a neutrino factory.
Address [Coloma, P.] Virginia Tech, Dept Phys, Ctr Neutrino Phys, Blacksburg, VA 24061 USA, Email: coloma@vt.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000306416500074 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1141
Permanent link to this record
 

 
Author Bernabeu, J.; Martinez-Vidal, F.; Villanueva-Perez, P.
Title Time reversal violation from the entangled B-0(B)over-bar(0) system Type Journal Article
Year (down) 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 064 - 18pp
Keywords Discrete and Finite Symmetries; B-Physics; CP violation
Abstract We discuss the concepts and methodology to implement an experiment probing directly Time Reversal (T) non-invariance, without any experimental connection to CP violation, by the exchange of in and out states. The idea relies on the B-0(B) over bar (0)) entanglement and decay time information available at B factories. The flavor or CP tag of the state of the still living neutral meson by the first decay of its orthogonal partner overcomes the problem of irreversibility for unstable systems, which prevents direct tests of T with incoherent particle states. T violation in the time evolution between the two decays means experimentally a difference between the rates for the time-ordered (l+X, J/psi K-s) and (J/psi K-L, l(-)X) decays, and three other independent asymmetries. The proposed strategy has been applied to simulated data samples of similar size and features to those currently available, from which we estimate the significance of the expected discovery to reach many standard deviations.
Address [Bernabeu, J.] Univ Valencia, Dept Theoret Phys, E-46100 Burjassot, Spain, Email: Jose.Bernabeu@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000309883600021 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1215
Permanent link to this record