|
Guadilla, V. et al, Algora, A., Tain, J. L., Agramunt, J., Jordan, D., Monserrate, M., et al. (2022). Total absorption gamma-ray spectroscopy of the ss decays of Y-96gs,Y-m. Phys. Rev. C, 106(1), 014306–14pp.
Abstract: The ss decays of the ground state (gs) and isomeric state (m) of Y-96 have been studied with the total absorption gamma-ray spectroscopy technique at the Ion Guide Isotope Separator On-Line facility. The separation of the 8(+) isomeric state from the 0(-) ground state was achieved thanks to the purification capabilities of the JYFLTRAP double Penning trap system. The ss-intensity distributions of both decays have been independently determined. In the analyses the deexcitation of the 1581.6 keV level in Zr-96, in which conversion electron emission competes with pair production, has been carefully considered and found to have significant impact on the ss-detector efficiency, influencing the ss-intensity distribution obtained. Our results for Y-96gs (0(-)) confirm the large ground state to ground state ss-intensity probability, although a slightly larger value than reported in previous studies was obtained, amounting to 96.6(-2.1)(+0.3) % of the total ss intensity. Given that the decay of Y-96gs is the second most important contributor to the reactor antineutrino spectrum between 5 and 7 MeV, the impact of the present results on reactor antineutrino summation calculations has been evaluated. In the decay of Y-96m (8(+)), previously undetected ss intensity in transitions to states above 6 MeV has been observed. This shows the importance of total absorption gamma-ray spectroscopy measurements of ss decays with highly fragmented deexcitation patterns. Y-96m (8(+)) is a major contributor to reactor decay heat in uranium-plutonium and thorium-uranium fuels around 10 s after fission pulses, and the newly measured average ss and gamma energies differ significantly from the previous values in evaluated databases. The discrepancy is far above the previously quoted uncertainties. Finally, we also report on the successful implementation of an innovative total absorption gamma-ray spectroscopy analysis of the module-multiplicity gated spectra, as a first proof of principle to distinguish between decaying states with very different spin-parity values.
|
|
|
Mistry, A. K. et al, Tain, J. L., Agramunt, J., Algora, A., Guadilla, V., Morales, A. I., et al. (2022). The DESPEC setup for GSI and FAIR. Nucl. Instrum. Methods Phys. Res. A, 1033, 166662–18pp.
Abstract: The DEcay SPECtroscopy (DESPEC) setup for nuclear structure investigations was developed and commissioned at GSI, Germany in preparation for a full campaign of experiments at the FRS and Super-FRS. In this paper, we report on the first employment of the setup in the hybrid configuration with the AIDA implanter coupled to the FATIMA LaBr3(Ce) fast-timing array, and high-purity germanium detectors. Initial results are shown from the first experiments carried out with the setup. An overview of the setup and function is discussed, including technical advancements along the path.
|
|
|
Kiss, G. G. et al, Tarifeño-Saldivia, A., Tain, J. L., Agramunt, J., Algora, A., Domingo-Pardo, C., et al. (2022). Measuring the beta-decay Properties of Neutron-rich Exotic Pm, Sm, Eu, and Gd Isotopes to Constrain the Nucleosynthesis Yields in the Rare-earth Region. Astrophys. J., 936(2), 107–18pp.
Abstract: The beta-delayed neutron-emission probabilities of 28 exotic neutron-rich isotopes of Pm, Sm, Eu, and Gd were measured for the first time at RIKEN Nishina Center using the Advanced Implantation Detector Array (AIDA) and the BRIKEN neutron detector array. The existing beta-decay half-life (T (1/2)) database was significantly increased toward more neutron-rich isotopes, and uncertainties for previously measured values were decreased. The new data not only constrain the theoretical predictions of half-lives and beta-delayed neutron-emission probabilities, but also allow for probing the mechanisms of formation of the high-mass wing of the rare-earth peak located at A approximate to 160 in the r-process abundance distribution through astrophysical reaction network calculations. An uncertainty quantification of the calculated abundance patterns with the new data shows a reduction of the uncertainty in the rare-earth peak region. The newly introduced variance-based sensitivity analysis method offers valuable insight into the influence of important nuclear physics inputs on the calculated abundance patterns. The analysis has identified the half-lives of Sm-168 and of several gadolinium isotopes as some of the key variables among the current experimental data to understand the remaining abundance uncertainty at A = 167-172.
|
|
|
Orrigo, S. E. A., Tain, J. L., Mont-Geli, N., Tarifeño-Saldivia, A., Fraile, L. M., Grieger, M., et al. (2022). Long-term evolution of the neutron rate at the Canfranc Underground Laboratory. Eur. Phys. J. C, 82(9), 814–11pp.
Abstract: We report results on the long-term variation of the neutron counting rate at the Canfranc Underground Laboratory, of importance for several low-background experiments installed there, including rare-event searches. The measurement campaign was performed employing the High Efficiency Neutron Spectrometry Array (HENSA) mounted in Hall A and lasted 412 live days. The present study is the first long-term measurement of the neutron rate with sensitivity over a wide range of neutron energies (from thermal up to 0.1 GeV and beyond) performed in any underground laboratory so far. Data on the environmental variables inside the experimental hall (radon concentration, air temperature, air pressure and humidity) were also acquired during all the measurement campaign. We have investigated for the first time the evolution of the neutron rate for different energies of the neutrons and its correlation with the ambient variables.
|
|
|
R3B Collaboration(Heil, M. et al), & Nacher, E. (2022). A new Time-of-flight detector for the (RB)-B-3 setup. Eur. Phys. J. A, 58(12), 248–19pp.
Abstract: We present the design, prototype developments and test results of the new time-of-flight detector (ToFD) which is part of the R3B experimental setup at GSI and FAIR, Darmstadt, Germany. The ToFD detector is able to detect heavy-ion residues of all charges at relativistic energies with a relative energy precision sigma_Delta E/Delta E of up to 1% and a time precision of up to 14 ps (sigma). Together with an elaborate particle-tracking system, the full identification of relativistic ions from hydrogen up to uranium in mass and nuclear charge is possible.
|
|
|
Viñals, S., Nacher, E., Tengblad, O., Borge, M. J. G., Briz, J. A., Gad, A., et al. (2021). Calibration and response function of a compact silicon-detector set-up for charged-particle spectroscopy using GEANT4. Eur. Phys. J. A, 57(2), 49–9pp.
Abstract: A complete methodology for detector calibration and energy-loss correction in charged-particle spectroscopy is presented. This has been applied to a compact set-up of four silicon detectors used for beta-delayed particle spectroscopy. The characterisation of the set-up was carried out using GEANT4 Monte Carlo simulations and standard alpha-calibration sources. The response function of the system was in this way accurately determined to be used for spectral unfolding.
|
|
|
Brunet, M. et al, & Nacher, E. (2021). Competition between allowed and first-forbidden beta decays of At-208 and expansion of the Po-208 level scheme. Phys. Rev. C, 103(5), 054327–13pp.
Abstract: The structure of Po-208 populated through the EC/beta(+) decay of At-208 is investigated using gamma-ray spectroscopy at the ISOLDE Decay Station. The presented level scheme contains 27 new excited states and 43 new transitions, as well as a further 50 previously observed. rays which have been (re)assigned a position. The level scheme is compared to shell model calculations. Through this analysis approximately half of the beta-decay strength of At-208 is found to proceed via allowed decay and half via first-forbidden decay. The first-forbidden transitions predominantly populate core excited states at high excitation energies, which is qualitatively understood using shell model considerations. This mass region provides an excellent testing ground for the competition between allowed and first-forbidden beta-decay calculations, important for the detailed understanding of the nucleosynthesis of heavy elements.
|
|
|
Algora, A., Ganioglu, E., Sarriguren, P., Guadilla, V., Fraile, L. M., Nacher, E., et al. (2021). Total absorption gamma-ray spectroscopy study of the beta-decay of Hg-186. Phys. Lett. B, 819, 136438–7pp.
Abstract: The Gamow-Teller strength distribution of the decay of Hg-186 into Au-186 has been determined for the first time using the total absorption gamma spectroscopy technique and has been compared with theoretical QRPA calculations using the SLy4 Skyrme force. The measured Gamow-Teller strength distribution and the half-life are described by mixing oblate and prolate configurations independently in the parent and daughter nuclei. In this theoretical framework the best description of the experimental beta strength is obtained with dominantly prolate components for both parent Hg-186 and daughter Au-186. The approach also allowed us to determine an upper limit of the oblate component in the parent state. The complexity of the analysis required the development of a new approach in the analysis of the X-ray gated total absorption spectrum.
|
|
|
Kuhn, K. et al, & Nacher, E. (2021). Experimental study of the nature of the 1(-) and 2(-) excited excited states in Be-10 using the Be-11(p, d) reaction in inverse kinematics. Phys. Rev. C, 104(4), 044601–10pp.
Abstract: The nature of the 1(-) and 2(-) excited states in Be-10 is studied using the Be-11(p, d) transfer reaction in inverse kinematics at 10A MeV at TRIUMF ISAC-II, in particular to assess whether either of them can be considered as an excited halo state. The angular distributions for both states are extracted using deuteron-gamma( )coincidences and analyzed using a transfer model taking into account one-step and two-step processes. A good fit of the angular distributions is obtained considering only the one-step process, whereby an inner p(3/2) neutron of Be-11 is removed, leaving the halo neutron intact. Higher-order processes however cannot be rejected. The small spectroscopic factors extracted suggest that the structure of both states is not uniquely halo-like, but rather display a more complex configuration mixing cluster and halo structures. Further insights are limited, as this experiment specifically probed the halo-like (but not cluster-like) Be-11 (1/2(+)) circle times (nu p(3/2))(-1) configuration in both states.
|
|
|
IDS Collaboration(Piersa-Silkowska, M. et al), & Nacher, E. (2021). First beta-decay spectroscopy of In-135 and new beta-decay branches of In-134. Phys. Rev. C, 101(4), 044328–19pp.
Abstract: The beta decay of the neutron-rich In-134 and In-135 was investigated experimentally in order to provide new insights into the nuclear structure of the tin isotopes with magic proton number Z = 50 above the N = 82 shell. The beta-delayed gamma-ray spectroscopy measurement was performed at the ISOLDE facility at CERN, where indium isotopes were selectively laser-ionized and on-line mass separated. Three beta-decay branches of In-134 were established, two of which were observed for the first time. Population of neutron-unbound states decaying via gamma rays was identified in the two daughter nuclei of In-134, Sn-134 and Sn-133, at excitation energies exceeding the neutron separation energy by 1 MeV. The beta-delayed one-and two-neutron emission branching ratios of In-134 were determined and compared with theoretical calculations. The beta-delayed one-neutron decay was observed to be dominant beta-decay branch of In-134 even though the Gamow-Teller resonance is located substantially above the two-neutron separation energy of Sn-134. Transitions following the beta decay of In-135 are reported for the first time, including gamma rays tentatively attributed to Sn-135. In total, six new levels were identified in Sn-134 on the basis of the beta gamma gamma coincidences observed in the In-134 and In-135 beta decays. A transition that might be a candidate for deexciting the missing neutron single-particle 13/2(+) state in Sn-133 was observed in both beta decays and its assignment is discussed. Experimental level schemes of Sn-134 and Sn-135 are compared with shell-model predictions. Using the fast timing technique, half-lives of the 2(+), 4(+), and 6(+) levels in Sn-134 were determined. From the lifetime of the 4(+) state measured for the first time, an unexpectedly large B(E2; 4(+) -> 2(+)) transition strength was deduced, which is not reproduced by the shell-model calculations.
|
|