|   | 
Details
   web
Records
Author Aliaga, R.J.
Title Real-Time Estimation of Zero Crossings of Sampled Signals for Timing Using Cubic Spline Interpolation Type Journal Article
Year 2017 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume (down) 64 Issue 8 Pages 2414-2422
Keywords Digital arithmetic; digital circuits; digital timing; field-programmable gate array (FPGA); interpolation; signal processing algorithms; splines time estimation; time resolution
Abstract A scheme is proposed for hardware estimation of the location of zero crossings of sampled signals with subsample resolution for timing applications, which consists of interpolating the signal with a cubic spline near the zero crossing and then finding the root of the resulting polynomial. An iterative algorithm based on the bisection method is presented that obtains one bit of the result per step and admits an efficient digital implementation using fixed-point representation. In particular, the root estimation iteration involves only two additions, and the initial values can be obtained from finite impulse response (FIR) filters with certain symmetry properties. It is shown that this allows online real-time estimation of timestamps in free-running sampling detector systems with improved accuracy with respect to the more common linear interpolation. The method is evaluated with simulations using ideal and real timing signals, and estimates are given for the resource usage and speed of its implementation.
Address [Aliaga, Ramon J.] Inst Fis Corpuscular, Paterna 46980, Spain, Email: raalva@upvnet.upv.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000411027700008 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3301
Permanent link to this record
 

 
Author Cabello, J.; Etxebeste, A.; Llosa, G.; Ziegler, S.I.
Title Simulation study of PET detector limitations using continuous crystals Type Journal Article
Year 2015 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.
Volume (down) 60 Issue 9 Pages 3673-3694
Keywords continuous crystals; parallax effects; depth of interaction; high resolution; small animal PET
Abstract Continuous crystals can potentially obtain better intrinsic detector spatial resolution compared to pixelated crystals, additionally providing depth of interaction (DoI) information from the light distribution. To achieve high performance sophisticated interaction position estimation algorithms are required. There are a number of algorithms in the literature applied to different crystal dimensions and different photodetectors. However, the different crystal properties and photodetector array geometries have an impact on the algorithm performance. In this work we analysed, through Monte Carlo simulations, different combinations of realistic crystals and photodetector parameters to better understand their influence on the interaction position estimation accuracy, with special emphasis on the DoI. We used an interaction position estimation based on an analytical model for the present work. Different photodetector granulation schemes were investigated. The impact of the number of crystal faces readout by photodetectors was studied by simulating scenarios with one and two photodetectors. In addition, crystals with different levels of reflection and aspect ratios (AR) were analysed. Results showed that the impact of photodetector granularity is mainly shown near the edges and specially in the corners of the crystal. The resulting intrinsic spatial resolution near the centre with a 12 x 12 x 10 mm(3) LYSO crystal was 0.7-0.9 mm, while the average spatial resolution calculated on the entire crystal was 0.77 +/- 0.18 mm for all the simulated geometries with one and two photodetectors. Having front and back photodetectors reduced the DoI bias (Euclidean distance between estimated DoI and real DoI) and improved the transversal resolution near the corners. In scenarios with one photodetector, small AR resulted in DoI inaccuracies for absorbed events at the entrance of the crystal. These inaccuracies were slightly reduced either by increasing the AR or reducing the amount of reflected light, and highly mitigated using two photodetectors. Using one photodetector, we obtained a piecewise DoI error model with a DoI resolution of 0.4-0.9 mm for a 1.2 AR crystal, and we observed that including a second photodetector or reducing the amount of reflections reduced the DoI bias but did not significantly improve the DoI resolution. Translating the piecewise DoI error model obtained in this study to image reconstruction we obtained a spatial resolution variability of 0.39 mm using 85% of the FoV, compared to 2.59 mm and 1.87 mm without DoI correction or with a dual layer system, respectively.
Address [Cabello, Jorge; Ziegler, Sibylle I.] Tech Univ Munich, Klinikum Rechts Isar, Nukl Med Klin & Poliklin, D-80290 Munich, Germany, Email: jorge.cabello@tum.de
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9155 ISBN Medium
Area Expedition Conference
Notes WOS:000354104700019 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2226
Permanent link to this record
 

 
Author Brzezinski, K.; Oliver, J.F.; Gillam, J.; Rafecas, M.
Title Study of a high-resolution PET system using a Silicon detector probe Type Journal Article
Year 2014 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.
Volume (down) 59 Issue 20 Pages 6117-6140
Keywords PET; high-resolution imaging; Si detectors; PET insert
Abstract A high-resolution silicon detector probe, in coincidence with a conventional PET scanner, is expected to provide images of higher quality than those achievable using the scanner alone. Spatial resolution should improve due to the finer pixelization of the probe detector, while increased sensitivity in the probe vicinity is expected to decrease noise. A PET-probe prototype is being developed utilizing this principle. The system includes a probe consisting of ten layers of silicon detectors, each a 80 x 52 array of 1 x 1 x 1 mm(3) pixels, to be operated in coincidence with a modern clinical PET scanner. Detailed simulation studies of this system have been performed to assess the effect of the additional probe information on the quality of the reconstructed images. A grid of point sources was simulated to study the contribution of the probe to the system resolution at different locations over the field of view (FOV). A resolution phantom was used to demonstrate the effect on image resolution for two probe positions. A homogeneous source distribution with hot and cold regions was used to demonstrate that the localized improvement in resolution does not come at the expense of the overall quality of the image. Since the improvement is constrained to an area close to the probe, breast imaging is proposed as a potential application for the novel geometry. In this sense, a simplified breast phantom, adjacent to heart and torso compartments, was simulated and the effect of the probe on lesion detectability, through measurements of the local contrast recovery coefficient-to-noise ratio (CNR), was observed. The list-mode ML-EM algorithm was used for image reconstruction in all cases. As expected, the point spread function of the PET-probe system was found to be non-isotropic and vary with position, offering improvement in specific regions. Increase in resolution, of factors of up to 2, was observed in the region close to the probe. Images of the resolution phantom showed visible improvement in resolution when including the probe in the simulations. The image quality study demonstrated that contrast and spill-over ratio in other areas of the FOV were not sacrificed for this enhancement. The CNR study performed on the breast phantom indicates increased lesion detectability provided by the probe.
Address [Brzezinski, K.; Oliver, J. F.; Gillam, J.; Rafecas, M.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Valencia, Spain, Email: brzezinski@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9155 ISBN Medium
Area Expedition Conference
Notes WOS:000343092300011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1963
Permanent link to this record
 

 
Author Linowski, T.; Schlichtholz, K.; Sorelli, G.; Gessner, M.; Walschaers, M.; Treps, N.; Rudnicki, L.
Title Application range of crosstalk-affected spatial demultiplexing for resolving separations between unbalanced sources Type Journal Article
Year 2023 Publication New Journal of Physics Abbreviated Journal New J. Phys.
Volume (down) 25 Issue 10 Pages 103050 - 13pp
Keywords super resolution; spatial demultiplexing; crosstalk; unbalanced sources; Fisher information; measurement precision
Abstract Super resolution is one of the key issues at the crossroads of contemporary quantum optics and metrology. Recently, it was shown that for an idealized case of two balanced sources, spatial mode demultiplexing (SPADE) achieves resolution better than direct imaging even in the presence of measurement crosstalk (Gessner et al 2020 Phys. Rev. Lett. 125 100501). In this work, we consider arbitrarily unbalanced sources and provide a systematic analysis of the impact of crosstalk on the resolution obtained from SPADE. As we dissect, in this generalized scenario, SPADE's effectiveness depends non-trivially on the strength of crosstalk, relative brightness and the separation between the sources. In particular, for any source imbalance, SPADE performs worse than ideal direct imaging in the asymptotic limit of vanishing source separations. Nonetheless, for realistic values of crosstalk strength, SPADE is still the superior method for several orders of magnitude of source separations.
Address [Linowski, Tomasz; Schlichtholz, Konrad; Rudnicki, Lukasz] Univ Gdansk, Int Ctr Theory Quantum Technol, PL-80308 Gdansk, Poland, Email: t.linowski95@gmail.com;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Medium
Area Expedition Conference
Notes WOS:001119385500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5844
Permanent link to this record
 

 
Author Albiol, F.; Corbi, A.; Albiol, A.
Title Evaluation of modern camera calibration techniques for conventional diagnostic X-ray imaging settings Type Journal Article
Year 2017 Publication Radiological Physics and Technology Abbreviated Journal Radiol. Phys. Technol.
Volume (down) 10 Issue 1 Pages 68-81
Keywords Conventional X-ray camera calibration; Detector resolution; Intrinsic and extrinsic parameters; Zhang's method; Direct linear transform; Tsai's approach
Abstract We explore three different alternatives for obtaining intrinsic and extrinsic parameters in conventional diagnostic X-ray frameworks: the direct linear transform (DLT), the Zhang method, and the Tsai approach. We analyze and describe the computational, operational, and mathematical background differences for these algorithms when they are applied to ordinary radiograph acquisition. For our study, we developed an initial 3D calibration frame with tin cross-shaped fiducials at specific locations. The three studied methods enable the derivation of projection matrices from 3D to 2D point correlations. We propose a set of metrics to compare the efficiency of each technique. One of these metrics consists of the calculation of the detector pixel density, which can be also included as part of the quality control sequence in general X-ray settings. The results show a clear superiority of the DLT approach, both in accuracy and operational suitability. We paid special attention to the Zhang calibration method. Although this technique has been extensively implemented in the field of computer vision, it has rarely been tested in depth in common radiograph production scenarios. Zhang's approach can operate on much simpler and more affordable 2D calibration frames, which were also tested in our research. We experimentally confirm that even three or four plane-image correspondences achieve accurate focal lengths.
Address [Albiol, Francisco; Corbi, Alberto] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: alberto.corbi@ific.uv.es
Corporate Author Thesis
Publisher Springer Japan Kk Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1865-0333 ISBN Medium
Area Expedition Conference
Notes WOS:000405867100009 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3238
Permanent link to this record