Lerendegui-Marco, J., Cisterna, G., Hallam, J., Babiano-Suarez, V., Balibrea-Correa, J., Calvo, D., et al. (2025). Imaging neutrons with a position-sensitive monolithic CLYC detector. Nucl. Instrum. Methods Phys. Res. A, 1079, 170594–12pp.
Abstract: In this work, we have developed and characterized a position-sensitive CLYC detector that acts as the neutron imaging layer and y-ray Compton scatterer of the novel dual Gamma-ray and Neutron Vision (GN-Vision) system, which aims at simultaneously obtaining information about the spatial origin of y-ray and neutron sources. We first investigated the performance of two large 50 x 50 mm2 monolithic CLYC crystals, 8 and 13 mm thick respectively, coupled to a pixelated SiPM in terms of energy resolution and neutron-gamma discrimination. The response of two different 95% 6Li-enriched CLYC detectors coupled to an array of 8 x 8 SiPMs was studied in comparison to the results of a conventional photo-multiplier tube. An energy resolution of about 6% with PMT and 8% with SiPMs for the 137Cs peak and a figure of merit of 3-4 for the neutron-gamma discrimination have been obtained. The spatial response of the CLYC-SiPM detector to y-rays and neutrons has also been characterized using charge modulation-based multiplexing techniques based on a diode-coupled charge division circuit. Average resolutions close to 5 mm FWHM with good linearity are obtained in the transverse crystal plane. Last, this work presents the first proof-of-concept experiments of the neutron imaging capability using a neutron pinhole collimator attached to the developed position sensitive CLYC detector.
|
Lerendegui-Marco, J., Hallam, J., Cisterna, G., Sanchis-Molto, A., Balibrea-Correa, J., Babiano-Suarez, V., et al. (2025). First experimental results and optimization study of the portable neutron-gamma imager GN-Vision. Appl. Radiat. Isot., 224, 111826–13pp.
Abstract: GN-Vision is a compact, dual-modality imaging device designed to simultaneously localize the spatial origin of y-ray and slow neutron sources, with potential applications in nuclear safety, security, and hadron therapy. The system utilizes two position-sensitive detection planes, combining Compton imaging techniques for yray visualization with passive collimation for imaging slow and thermal neutrons (energies below 100 eV). This paper presents the first experimental outcomes from the initial GN-Vision prototype, focused on the development of its neutron imaging capabilities. Following this experimental assessment, we explore the device's performance potential and discuss several Monte Carlo simulation-based optimizations aimed at refining the neutron collimation system. These optimizations seek to improve real-time imaging efficiency and cost-effectiveness, enhancing GN-Vision's applicability for future practical deployments.
|
Torres-Sanchez, P., Lerendegui-Marco, J., Balibrea-Correa, J., Babiano-Suarez, V., Gameiro, B., Ladarescu, I., et al. (2025). The potential of the i-TED Compton camera array for real-time boron imaging and determination during treatments in Boron Neutron Capture Therapy. Appl. Radiat. Isot., 217, 111649–9pp.
Abstract: This paper explores the adaptation and application of i-TED Compton imagers for real-time dosimetry in Boron Neutron Capture Therapy (BNCT). The i-TED array, previously utilized in nuclear astrophysics experiments at CERN, is being optimized for detecting and imaging 478 keV gamma-rays, critical for accurate BNCT dosimetry. Detailed Monte Carlo simulations were used to optimize the i-TED detector configuration and enhance its performance in the challenging radiation environment typical of BNCT. Additionally, advanced 3D image reconstruction algorithms, including a combination of back-projection and List-Mode Maximum Likelihood Expectation Maximization (LM-MLEM), are implemented and validated through simulations. Preliminary experimental tests at the Institut Laue-Langevin (ILL) demonstrate the potential of i-TED in simplified conditions, with ongoing experiments focusing on testing imaging capabilities in realistic BNCT conditions.
|
Verdera, A., Torres-Sanchez, P., Praena, J., & Porras, I. (2024). Study of the out-of-field dose from an accelerator-based neutron source for boron neutron capture therapy. Appl. Radiat. Isot., 212, 111458–6pp.
Abstract: One important issue in Boron Neutron Capture Therapy is the delivered dose to the tissues outside the tumor. An international standard for light ion beam systems sets two recommended limits for out-of-field dose based on distance from the field edge: maximum absorbed dose from all radiation types shall not exceed 0.5 % of the maximum dose at distances 15 cm to 50 cm from the field edge. At distances > 50 cm from the field edge, the maximum absorbed dose shall not exceed 0.1 %. This paper is a continuation of our previous works focused on the design of an accelerator-based neutron source for BNCT. We already designed a novel Beam Shape Assembly which meets the IAEA criteria for BNCT treatments. Using this BSA, in the present work, we characterize by Monte Carlo simulations the dose outside the neutron field. The out-of-field dose has been assessed via estimates using the ambient and equivalent dose. Also the boron uptake in healthy tissues has been analyzed for the equivalent dose computation. It is concluded that our design for a future accelerator-based source for BNCT meets reasonably well the criteria defined from other forms of radiotherapy on both equivalent and effective dose outside the field.
|
n_TOF Collaboration(Torres-Sanchez, P. et al), Babiano-Suarez, V., Caballero, L., Domingo-Pardo, C., Ladarescu, I., & Tain, J. L. (2023). Measurement of the 14N(n, p) 14C cross section at the CERN n_TOF facility from subthermal energy to 800 keV. Phys. Rev. C, 107(6), 064617–15pp.
Abstract: Background: The 14N(n, p) 14C reaction is of interest in neutron capture therapy, where nitrogen-related dose is the main component due to low-energy neutrons, and in astrophysics, where 14N acts as a neutron poison in the s process. Several discrepancies remain between the existing data obtained in partial energy ranges: thermal energy, keV region, and resonance region. Purpose: We aim to measure the 14N(n, p) 14C cross section from thermal to the resonance region in a single measurement for the first time, including characterization of the first resonances, and provide calculations of Maxwellian averaged cross sections (MACS). Method: We apply the time-of-flight technique at Experimental Area 2 (EAR-2) of the neutron time-of-flight (n_TOF) facility at CERN. 10B(n, & alpha;) 7Li and 235U(n, f ) reactions are used as references. Two detection systems are run simultaneously, one on beam and another off beam. Resonances are described with the R-matrix code SAMMY. Results: The cross section was measured from subthermal energy to 800 keV, resolving the first two resonances (at 492.7 and 644 keV). A thermal cross section was obtained (1.809 & PLUSMN; 0.045 b) that is lower than the two most recent measurements by slightly more than one standard deviation, but in line with the ENDF/B-VIII.0 and JEFF-3.3 evaluations. A 1/v energy dependence of the cross section was confirmed up to tens of keV neutron energy. The low energy tail of the first resonance at 492.7 keV is lower than suggested by evaluated values, while the overall resonance strength agrees with evaluations. Conclusions: Our measurement has allowed determination of the 14N(n, p) cross section over a wide energy range for the first time. We have obtained cross sections with high accuracy (2.5%) from subthermal energy to 800 keV and used these data to calculate the MACS for kT = 5 to kT = 100 keV.
|
Torres-Sanchez, P., Steiger, H. T. J., Mastinu, P., Wyss, J. L., Kayser, L., Silvestrin, L., et al. (2024). Fast neutron production at the LNL Tandem from the 7Li(14N,xn)X reaction. Eur. Phys. J. C, 84(4), 372–11pp.
Abstract: Fast neutron beams (E-n>1 MeV) are of relevance for many scientific and industrial applications. This paper explores fast neutron production using a TANDEM accelerator at the Legnaro National Laboratories, via an energetic ion beam (90 MeV N-14) onto a lithium target. The high energy models for nuclear collision of FLUKA foresee large neutron yields for reactions of this kind. The experiment aimed at validating the expected neutron yields from FLUKA simulations, using two separate and independent set-ups: one based on the multi-foil activation technique, and the other on the time of flight technique, by using liquid scintillator detectors. The results of the experiment show clear agreement of the measured spectra with the FLUKA simulations, both in the shape and the magnitude of the neutron flux at the mea-sured positions. The neutron spectrum is centered around the 8 MeV range with mild tails, and a maximum neutron energy spanning up to 50 MeV. These advantageous results provide a starting point in the development of fast neutron beams based on high energy ion beams from medium-sized accelerator facilities
|
n_TOF Collaboration(Domingo-Pardo, C. et al), Balibrea-Correa, J., Gameiro, B., de la Fuente Rosales, G., Lerendegui-Marco, J., Tarifeño-Saldivia, A., et al. (2025). Neutron capture measurements for s-process nucleosynthesis. Eur. Phys. J. A, 61(5), 105–19pp.
Abstract: This article presents a review about the main CERN nTOF contributions to the field of neutron-capture experiments of interest for s-process nucleosynthesis studies over the last 25 years, with a special focus on the measurement of radioactive isotopes. A few recent capture experiments on stable isotopes of astrophysical interest are also discussed. Results on s-process branching nuclei are appropriate to illustrate how advances in detection systems and upgrades in the facility have enabled increasingly challenging experiments and, as a consequence, have led to a better understanding and modeling of the s-process mechanism of nucleosynthesis. New endeavors combining radioactive-ion beams from ISOLDE for the production of radioisotopically pure samples for activation experiments at the new NEAR facility at nTOF are briefly discussed. On the basis of these new exciting results, also current limitations of state-of-the-art TOF and activation techniques will be depicted, thereby showing the pressing need for further upgrades and enhancements on both facilities and detection systems. A brief account of the potential technique based on inverse kinematics for direct neutron-capture measurements is also presented.
|