toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author de Salas, P.F.; Lattanzi, M.; Mangano, G.; Miele, G.; Pastor, S.; Pisanti, O. url  doi
openurl 
  Title Bounds on very low reheating scenarios after Planck Type Journal Article
  Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume (up) 92 Issue 12 Pages 123534 - 9pp  
  Keywords  
  Abstract We consider the case of very low reheating scenarios [T-RH similar to O(MeV)] with a better calculation of the production of the relic neutrino background (with three-flavor oscillations). At 95% confidence level, a lower bound on the reheating temperature T-RH > 4.1 MeV is obtained from big bang nucleosynthesis, while T-RH > 4.7 MeV from Planck data (allowing neutrino masses to vary), the most stringent bound on the reheating temperature to date. Neutrino masses as large as 1 eV are possible for very low reheating temperatures.  
  Address [de Salas, P. F.; Pastor, S.] Univ Valencia, CSIC, Inst Fis Corpuscular, Paterna 46980, Valencia, Spain, Email: lattanzi@fe.infn.it  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000367078600010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2502  
Permanent link to this record
 

 
Author Gerbino, M.; Freese, K.; Vagnozzi, S.; Lattanzi, M.; Mena, O.; Giusarma, E.; Ho, S. url  doi
openurl 
  Title Impact of neutrino properties on the estimation of inflationary parameters from current and future observations Type Journal Article
  Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume (up) 95 Issue 4 Pages 043512 - 22pp  
  Keywords  
  Abstract We study the impact of assumptions about neutrino properties on the estimation of inflationary parameters from cosmological data, with a specific focus on the allowed contours in the n(s)/r plane, where n(s) is the scalar spectral index and r is the tensor-to-scalar ratio. We study the following neutrino properties: (i) the total neutrino mass M-i = Sigma(i)m(i) (where the index i = 1, 2, 3 runs over the three neutrino mass eigenstates); (ii) the number of relativistic degrees of freedom N-eff at the time of recombination; and (iii) the neutrino hierarchy. Whereas previous literature assumed three degenerate neutrino masses or two massless neutrino species (approximations that clearly do not match neutrino oscillation data), we study the cases of normal and inverted hierarchy. Our basic result is that these three neutrino properties induce < 1 sigma shift of the probability contours in the n(s)/r plane with both current or upcoming data. We find that the choice of neutrino hierarchy (normal, inverted, or degenerate) has a negligible impact. However, the minimal cutoff on the total neutrino mass M-v,M-min = 0 that accompanies previous works using the degenerate hierarchy does introduce biases in the n(s)/r plane and should be replaced by M-v,M-min = 0.059 eV as required by oscillation data. Using current cosmic microwave background (CMB) data from Planck and Bicep/Keck, marginalizing over the total neutrino mass M-v and over r can lead to a shift in the mean value of ns of similar to 0.3 sigma toward lower values. However, once baryon acoustic oscillation measurements are included, the standard contours in the n(s)/r plane are basically reproduced. Larger shifts of the contours in the n(s)/r plane (up to 0.8 sigma) arise for nonstandard values of N-eff. We also provide forecasts for the future CMB experiments Cosmic Origins Explorer (COrE, satellite) and Stage-IV (ground-based) and show that the incomplete knowledge of neutrino properties, taken into account by a marginalization over M-v, could induce a shift of similar to 0.4 sigma toward lower values in the determination of ns (or a similar to 0.8 sigma shift if one marginalizes over N-eff). Comparison to specific inflationary models is shown. Imperfect knowledge of neutrino properties must be taken into account properly, given the desired precision in determining whether or not inflationary models match the future data.  
  Address [Gerbino, Martina; Freese, Katherine; Vagnozzi, Sunny] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, AlbaNova, SE-10691 Stockholm, Sweden, Email: martina.gerbino@fysik.su.se;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000427057900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3514  
Permanent link to this record
 

 
Author Vagnozzi, S.; Giusarma, E.; Mena, O.; Freese, K.; Gerbino, M.; Ho, S.; Lattanzi, M. url  doi
openurl 
  Title Unveiling nu secrets with cosmological data: Neutrino masses and mass hierarchy Type Journal Article
  Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume (up) 96 Issue 12 Pages 123503 - 26pp  
  Keywords  
  Abstract Using some of the latest cosmological data sets publicly available, we derive the strongest bounds in the literature on the sum of the three active neutrino masses, M-nu, within the assumption of a background flat Lambda CDM cosmology. In the most conservative scheme, combining Planck cosmic microwave background temperature anisotropies and baryon acoustic oscillations (BAO) data, as well as the up-to-date constraint on the optical depth to reionization (tau), the tightest 95% confidence level upper bound we find is M-nu < 0.151 eV. The addition of Planck high-l polarization data, which, however, might still be contaminated by systematics, further tightens the bound to M-nu < 0.118 eV. A proper model comparison treatment shows that the two aforementioned combinations disfavor the inverted hierarchy at similar to 64% C.L. and similar to 71% C.L., respectively. In addition, we compare the constraining power of measurements of the full- shape galaxy power spectrum versus the BAO signature, from the BOSS survey. Even though the latest BOSS full-shape measurements cover a larger volume and benefit from smaller error bars compared to previous similar measurements, the analysis method commonly adopted results in their constraining power still being less powerful than that of the extracted BAO signal. Our work uses only cosmological data; imposing the constraint M-nu > 0.06 eV from oscillations data would raise the quoted upper bounds by O(0.1 sigma) and would not affect our conclusions.  
  Address [Vagnozzi, Sunny; Freese, Katherine; Gerbino, Martina] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden, Email: sunny.vagnozzi@fysik.su.se;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000416948100004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3396  
Permanent link to this record
 

 
Author Hagstotz, S.; de Salas, P.F.; Gariazzo, S.; Pastor, S.; Gerbino, M.; Lattanzi, M.; Vagnozzi, S.; Freese, K. url  doi
openurl 
  Title Bounds on light sterile neutrino mass and mixing from cosmology and laboratory searches Type Journal Article
  Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume (up) 104 Issue 12 Pages 123524 - 20pp  
  Keywords  
  Abstract We present a consistent framework to set limits on properties of light sterile neutrinos coupled to all three active neutrinos using a combination of the latest cosmological data and terrestrial measurements from oscillations, beta-decay, and neutrinoless double-beta-decay (0 nu beta beta) experiments. We directly constrain the full 3 + 1 active-sterile mixing matrix elements vertical bar U-alpha 4 vertical bar(2) , with alpha is an element of (e,mu,tau), and the mass-squared splitting Delta m(41)(2) (math) m(4)(2) – m(1)(2). We find that results for a 3 + 1 case differ from previously studied 1 + 1 scenarios where the sterile is coupled to only one of the neutrinos, which is largely explained by parameter space volume effects. Limits on the mass splitting and the mixing matrix elements are currently dominated by the cosmological datasets. The exact results are slightly prior dependent, but we reliably find all matrix elements to be constrained below vertical bar U-alpha 4 vertical bar(2) less than or similar to 10(-3) . Short-baseline neutrino oscillation hints in favor of eV-scale sterile neutrinos arc in serious tension with these bounds, irrespective of prior assumptions. We also translate the bounds from the cosmological analysis into constraints on the parameters probed by laboratory searches, such as m(beta) or m(beta)(beta), the effective mass parameters probed by beta-decay and 0 nu beta beta searches, respectively. When allowing for mixing with a light sterile neutrino, cosmology leads to upper bounds of m(beta) < 0.09 eV and m(beta)(beta )< 0.07 eV at 95% CL, more stringent than the limits from current laboratory experiments.  
  Address [Hagstotz, Steffen; de Salas, Pablo F.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, Roslagstullsbacken 21A, SE-10691 Stockholm, Sweden, Email: steffen.hagstotz@fysik.su.se  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000730829500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5055  
Permanent link to this record
 

 
Author Di Valentino, E.; Giusarma, E.; Lattanzi, M.; Mena, O.; Melchiorri, A.; Silk, J. url  doi
openurl 
  Title Cosmological axion and neutrino mass constraints from Planck 2015 temperature and polarization data Type Journal Article
  Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume (up) 752 Issue Pages 182-185  
  Keywords  
  Abstract Axions currently provide the most compelling solution to the strong CP problem. These particles may be copiously produced in the early universe, including via thermal processes. Therefore, relic axions constitute a hot dark matter component and their masses are strongly degenerate with those of the three active neutrinos, as they leave identical signatures in the different cosmological observables. In addition, thermal axions, while still relativistic states, also contribute to the relativistic degrees of freedom, parameterized via N-eff. We present the cosmological bounds on the relic axion and neutrino masses, exploiting the full Planck mission data, which include polarization measurements. In the mixed hot dark matter scenario explored here, we find the tightest and more robust constraint to date on the sum of the three active neutrino masses, Sigma m nu < 0.136eV at 95% CL, as it is obtained in the very well-known linear perturbation regime. The Planck Sunyaev-Zeldovich cluster number count data further tightens this bound, providing a 95% CL upper limit of Sigma m nu < 0.126 eV in this very same mixed hot dark matter model, a value which is very close to the expectations in the inverted hierarchical neutrino mass scenario. Using this same combination of data sets we find the most stringent bound to date on the thermal axion mass, m(a) < 0.529 eV at 95% CL.  
  Address [Di Valentino, Eleonora; Silk, Joseph] CNRS, UMR7095, Inst Astrophys Paris, F-75014 Paris, France, Email: elena.giusarma@roma1.infn.it  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000368026000026 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2524  
Permanent link to this record
 

 
Author Gerbino, M.; Lattanzi, M.; Mena, O.; Freese, K. url  doi
openurl 
  Title A novel approach to quantifying the sensitivity of current and future cosmological datasets to the neutrino mass ordering through Bayesian hierarchical modeling Type Journal Article
  Year 2017 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume (up) 775 Issue Pages 239-250  
  Keywords  
  Abstract We present a novel approach to derive constraints on neutrino masses, as well as on other cosmological parameters, from cosmological data, while taking into account our ignorance of the neutrino mass ordering. We derive constraints from a combination of current as well as future cosmological datasets on the total neutrino mass M-nu and on the mass fractions f(nu),i = m(i)/M-nu (where the index i = 1, 2, 3 indicates the three mass eigenstates) carried by each of the mass eigenstates m(i), after marginalizing over the (unknown) neutrino mass ordering, either normal ordering (NH) or inverted ordering (IH). The bounds on all the cosmological parameters, including those on the total neutrino mass, take therefore into account the uncertainty related to our ignorance of the mass hierarchy that is actually realized in nature. This novel approach is carried out in the framework of Bayesian analysis of a typical hierarchical problem, where the distribution of the parameters of the model depends on further parameters, the hyperparameters. In this context, the choice of the neutrino mass ordering is modeled via the discrete hyperparameter h(type), which we introduce in the usual Markov chain analysis. The preference from cosmological data for either the NH or the IH scenarios is then simply encoded in the posterior distribution of the hyper-parameter itself. Current cosmic microwave background (CMB) measurements assign equal odds to the two hierarchies, and are thus unable to distinguish between them. However, after the addition of baryon acoustic oscillation (BAO) measurements, a weak preference for the normal hierarchical scenario appears, with odds of 4 : 3 from Planck temperature and large-scale polarization in combination with BAO (3 : 2 if small-scale polarization is also included). Concerning next-generation cosmological experiments, forecasts suggest that the combination of upcoming CMB (COrE) and BAO surveys (DESI) may determine the neutrino mass hierarchy at a high statistical significance if the mass is very close to the minimal value allowed by oscillation experiments, as for NH and a fiducial value of M-nu = 0.06 eV there is a 9 : 1 preference of normal versus inverted hierarchy. On the contrary, if the sum of the masses is of the order of 0.1 eV or larger, even future cosmological observations will be inconclusive. The innovative statistical strategy exploited here represents a very simple, efficient and robust tool to study the sensitivity of present and future cosmological data to the neutrino mass hierarchy, and a sound competitor to the standard Bayesian model comparison. The unbiased limit on M-nu we obtain is crucial for ongoing and planned neutrinoless double beta decay searches.  
  Address [Gerbino, Martina; Freese, Katherine] Stockholm Univ, Oskar Klein Ctr Cosmoparticle Phys, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden, Email: martina.gerbino@fysik.su.se;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000417190700033 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3435  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva