Adolf, P., Hirsch, M., & Päs, H. (2023). Radiative neutrino masses and the Cohen-Kaplan-Nelson bound. J. High Energy Phys., 11(11), 078–14pp.
Abstract: Recently, an increasing interest in UV/IR mixing phenomena has drawn attention to the range of validity of standard quantum field theory. Here we explore the consequences of such a limited range of validity in the context of radiative models for neutrino mass generation. We adopt an argument first published by Cohen, Kaplan and Nelson that gravity implies both UV and IR cutoffs, apply it to the loop integrals describing radiative corrections, and demonstrate that this effect has significant consequences for the parameter space of radiative neutrino mass models.
|
Kumar, R., Nath, N., & Srivastava, R. (2024). Cutting the scotogenic loop: adding flavor to dark matter. J. High Energy Phys., 12(12), 036–37pp.
Abstract: We introduce a framework for hybrid neutrino mass generation, wherein scotogenic dark sector particles, including dark matter, are charged non-trivially under the A4 flavor symmetry. The spontaneous breaking of the A4 group to residual Z2 subgroup results in the “cutting” of the radiative loop. As a consequence the neutrinos acquire mass through the hybrid “scoto-seesaw” mass mechanism, combining aspects of both the tree-level seesaw and one-loop scotogenic mechanisms, with the residual Z2 subgroup ensuring the stability of the dark matter. The flavor symmetry also leads to several predictions including the normal ordering of neutrino masses and “generalized μ- tau reflection symmetry” in leptonic mixing. Additionally, it gives testable predictions for neutrinoless double beta decay and a lower limit on the lightest neutrino mass. Finally, A4 -> Z2 breaking also leaves its imprint on the dark sector and ties it with the neutrino masses and mixing. The model allows only scalar dark matter, whose mass has a theoretical upper limit of less than or similar to 600 GeV, with viable parameter space satisfying all dark matter constraints, available only up to about 80 GeV. Conversely, fermionic dark matter is excluded due to constraints from the neutrino sector. Various aspects of this highly predictive framework can be tested in both current and upcoming neutrino and dark matter experiments.
|
King, S. F., Leontaris, G. K., Marsili, L., & Zhou, Y. L. (2024). Leptogenesis in realistic flipped SU(5). J. High Energy Phys., 12(12), 211–18pp.
Abstract: We study thermal leptogenesis in realistic supersymmetric flipped SU(5) x U(1) unification. As up-type quarks and neutrinos are arranged in the same multiplets, they exhibit strong correlations, and it is commonly believed that the masses of right-handed (RH) neutrinos are too hierarchical to fit the low-energy neutrino data. This pattern generally predicts a lightest RH neutrino too light to yield successful leptogenesis, with any lepton-antilepton asymmetry generated from heavier neutrinos being washed out unless special flavour structures are assumed. We propose a different scenario in which the lightest two RH neutrinos N1 and N2 have nearby masses of order 109 GeV, with thermal leptogenesis arising non-resonantly from both N1 and N2. We show that this pattern is consistent with all data on fermion masses and mixing and predicts the lightest physical left-handed neutrino mass to be smaller than about 10-7 eV. The Dirac phase, which does not take the maximal CP-violating value, plays an important role in leptogenesis.
|
Escrihuela, F. J., Forero, D. V., Miranda, O. G., Tortola, M., & Valle, J. W. F. (2017). Probing CP violation with non-unitary mixing in long-baseline neutrino oscillation experiments: DUNE as a case study. New J. Phys., 19, 093005–14pp.
Abstract: When neutrino masses arise from the exchange of neutral heavy leptons, as in most seesaw schemes, the effective lepton mixing matrix N describing neutrino propagation is non-unitary, hence neutrinos are not exactly orthonormal. New CP violation phases appear in N that could be confused with the standard phase delta(CP) characterizing the three neutrino paradigm. We study the potential of the long-baseline neutrino experiment DUNE in probing CP violation induced by the standard CP phase in the presence of non-unitarity. In order to accomplish this we develop our previous formalism, so as to take into account the neutrino interactions with the medium, important in long baseline experiments such as DUNE. We find that the expected CP sensitivity of DUNE is somewhat degraded with respect to that characterizing the standard unitary case. However the effect is weaker than might have been expected thanks mainly to the wide neutrino beam. We also investigate the sensitivity of DUNE to the parameters characterizing non-unitarity. In this case we find that there is no improvement expected with respect to the current situation, unless the near detector setup is revamped.
|
Gersabeck, E., & Pich, A. (2020). Tau and charm decays. C. R. Phys., 21(1), 75–92.
Abstract: A summary of recent precise results in tau and charm physics is presented. Topics include leptonic and hadronic tau decays, lepton flavour and lepton number violation, charm mixing and CP violation, leptonic and semileptonic charm decays, rare decays and spectroscopy.
|