toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Reig, M.; Restrepo, D.; Valle, J.W.F.; Zapata, O. url  doi
openurl 
  Title Bound-state dark matter and Dirac neutrino masses Type Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 97 Issue 11 Pages 115032 - 5pp  
  Keywords  
  Abstract We propose a simple theory for the idea that cosmological dark matter (DM) may be present today mainly in the form of stable neutral hadronic thermal relics. In our model, neutrino masses arise radiatively from the exchange of colored DM constituents, giving a common origin for both dark matter and neutrino mass. The exact conservation of B – L symmetry ensures dark matter stability and the Dirac nature of neutrinos. The theory can be falsified by dark matter nuclear recoil direct detection experiments, leading also to possible signals at a next generation hadron collider.  
  Address [Reig, M.; Valle, J. W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: mario.reig@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000435548100003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3622  
Permanent link to this record
 

 
Author Kuo, J.L.; Lattanzi, M.; Cheung, K.; Valle, J.W.F. url  doi
openurl 
  Title Decaying warm dark matter and structure formation Type Journal Article
  Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 12 Issue 12 Pages 026 - 24pp  
  Keywords cosmological simulations; dark matter simulations  
  Abstract We examine the cosmology of warm dark matter (WDM), both stable and decaying, from the point of view of structure formation. We compare the matter power spectrum associated to WDM masses of 1.5 keV and 0.158 keV, with that expected for the stable cold dark matter ACDM Xi SCDM paradigm, taken as our reference model. We scrutinize the effects associated to the warm nature of dark matter, as well as the fact that it decays. The decaying warm dark matter (DWDM) scenario is well-motivated, emerging in a broad class of particle physics theories where neutrino masses arise from the spontaneous breaking of a continuous global lepton number symmetry. The majoron arises as a Nambu-Goldstone boson, and picks up a mass from gravitational effects, that explicitly violate global symmetries. The majoron necessarily decays to neutrinos, with an amplitude proportional to their tiny mass, which typically gives it cosmologically long lifetimes. Using N-body simulations we show that our DWDM picture leads to a viable alternative to the ACDM scenario, with predictions that can differ substantially on small scales.  
  Address [Kuo, Jui-Lin; Cheung, Kingman] Natl Tsing Hua Univ, Dept Phys, Hsinchu, Taiwan, Email: juilinkuo@gapp.nthu.edu.tw;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000453858100005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3851  
Permanent link to this record
 

 
Author Centelles Chulia, S.; Srivastava, R.; Valle, J.W.F. url  doi
openurl 
  Title Seesaw roadmap to neutrino mass and dark matter Type Journal Article
  Year 2018 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 781 Issue Pages 122-128  
  Keywords  
  Abstract We describe the many pathways to generate Majorana and Dirac neutrino mass through generalized dimension-5 operators a la Weinberg. The presence of new scalars beyond the Standard Model Higgs doublet implies new possible field contractions, which are required in the case of Dirac neutrinos. We also notice that, in the Dirac neutrino case, the extra symmetries needed to ensure the Dirac nature of neutrinos can also be made responsible for stability of dark matter.  
  Address [Chulia, Salvador Centelles; Srivastava, Rahul; Valle, Jose W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cientif Paterna,C Catedrat Jose Beltra 2, E-46980 Valencia, Spain, Email: salcen@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000435653100016 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3631  
Permanent link to this record
 

 
Author Chen, P.; Centelles Chulia, S.; Ding, G.J.; Srivastava, R.; Valle, J.W.F. url  doi
openurl 
  Title Neutrino predictions from generalized CP symmetries of charged leptons Type Journal Article
  Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 077 - 26pp  
  Keywords Neutrino Physics; CP violation  
  Abstract We study the implications of generalized CP transformations acting on the mass matrices of charged leptons in a model-independent way. Generalized e – mu, e – tau and μ- tau symmetries are considered in detail. In all cases the physical parameters of the lepton mixing matrix, three mixing angles and three CP phases can be expressed in terms of a restricted set of independent “theory parameters” that characterize a given choice of CP transformation. This leads to implications for neutrino oscillations as well as neutrinoless double beta decay experiments.  
  Address [Chen, Peng] Ocean Univ China, Coll Informat Sci & Engn, Qingdao 266100, Peoples R China, Email: pche@mail.ustc.edu.cn;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000438620700007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3659  
Permanent link to this record
 

 
Author Miranda, O.G.; Pasquini, P.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Exploring the potential of short-baseline physics at Fermilab Type Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 97 Issue 9 Pages 095026 - 9pp  
  Keywords  
  Abstract We study the capabilities of the short-baseline neutrino program at Fermilab to probe the unitarity of the lepton mixing matrix. We find the sensitivity to be slightly better than the current one. Motivated by the future DUNE experiment, we have also analyzed the potential of an extra liquid Argon near detector in the LBNF beamline. Adding such a near detector to the DUNE setup will substantially improve the current sensitivity on nonunitarity. This would help to remove CP degeneracies due to the new complex phase present in the neutrino mixing matrix. We also study the sensitivity of our proposed setup to light sterile neutrinos for various configurations.  
  Address [Miranda, O. G.] IPN, Ctr Invest & Estudios Avanzados, Dept Fis, Apdo Postal 14-740, Mexico City 07000, DF, Mexico, Email: omr@fis.cinvestav.mx;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000433033000006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3592  
Permanent link to this record
 

 
Author Srivastava, R.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Testing a lepton quarticity flavor theory of neutrino oscillations with the DUNE experiment Type Journal Article
  Year 2018 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 778 Issue Pages 459-463  
  Keywords  
  Abstract Oscillation studies play a central role in elucidating at least some aspects of the flavor problem. Here we examine the status of the predictions of a lepton quarticity flavor theory of neutrino oscillations against the existing global sample of oscillation data. By performing quantitative simulations we also determine the potential of the upcoming DUNE experiment in narrowing down the currently ill-measured oscillation parameters theta(23) and delta(CP). We present the expected improved sensitivity on these parameters for different assumptions.  
  Address [Srivastava, Rahul; Ternes, Christoph A.; Tortola, Mariam; Valle, Jose W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Valencia, Spain, Email: rahulsri@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000426436700063 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3512  
Permanent link to this record
 

 
Author Hirsch, M.; Srivastava, R.; Valle, J.W.F. url  doi
openurl 
  Title Can one ever prove that neutrinos are Dirac particles? Type Journal Article
  Year 2018 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 781 Issue Pages 302-305  
  Keywords  
  Abstract According to the “Black Box” theorem the experimental confirmation of neutrinoless double beta decay (0 nu 2 beta) would imply that at least one of the neutrinos is a Majorana particle. However, a null 0 nu 2 beta signal cannot decide the nature of neutrinos, as it can be suppressed even for Majorana neutrinos. In this letter we argue that if the null 0 nu 2 beta decay signal is accompanied by a 0 nu 2 beta quadruple beta decay signal, then at least one neutrino should be a Dirac particle. This argument holds irrespective of the underlying processes leading to such decays.  
  Address [Hirsch, Martin; Srivastava, Rahul; Valle, Jose W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, C Catedrat Jose Beltran 2, E-46980 Valencia, Spain, Email: mahirsch@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000435653100039 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3632  
Permanent link to this record
 

 
Author Dong, P.V.; Huong, D.T.; Queiroz, F.S.; Valle, J.W.F.; Vaquera-Araujo, C.A. url  doi
openurl 
  Title The dark side of flipped trinification Type Journal Article
  Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 04 Issue 4 Pages 143 - 31pp  
  Keywords Cosmology of Theories beyond the SM; Discrete Symmetries; Gauge Symmetry  
  Abstract We propose a model which unifies the Left-Right symmetry with the SU(3)L gauge group, called flipped trinification, and based on the SU(3)(C)circle times SU(3)(L)circle times SU(3)(R)circle times U(1)(x) gauge group. The model inherits the interesting features of both symmetries while elegantly explaining the origin of the matter parity, W-p = ( 1)(3(B-L)+/- 2s), and dark matter stability. We develop the details of the spontaneous symmetry breaking mechanism in the model, determining the relevant mass eigenstates, and showing how neutrino masses are easily generated via the seesaw mechanism. Moreover, we introduce viable dark matter candidates, encompassing a fermion, scalar and possibly vector fields, leading to a potentially novel dark matter phenomenology.  
  Address [Dong, P. V.; Huong, D. T.] Vietnam Acad Sci & Technol, Inst Phys, 10 Dao Tan, Hanoi, Vietnam, Email: pvdong@iop.vast.ac.vn;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000432044000003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3576  
Permanent link to this record
 

 
Author Bonilla, C.; Lamprea, J.M.; Peinado, E.; Valle, J.W.F. url  doi
openurl 
  Title Flavour-symmetric type-II Dirac neutrino seesaw mechanism Type Journal Article
  Year 2018 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 779 Issue Pages 257-261  
  Keywords Neutrino masses and mixing; Flavour physics  
  Abstract We propose a Standard Model extension with underlying A(4) flavour symmetry where small Dirac neutrino masses arise from a Type-II seesaw mechanism. The model predicts the “golden” flavour-dependent bottom-tau mass relation, requires an inverted neutrino mass ordering and non-maximal atmospheric mixing angle. Using the latest neutrino oscillation global fit[ 1] we derive restrictions on the oscillation parameters, such as a correlation between delta(CP) and m(nu lightest).  
  Address [Bonilla, Cesar; Valle, Jose W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: cesar.bonilla@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000429098900032 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3566  
Permanent link to this record
 

 
Author Chatterjee, S.S.; Masud, M.; Pasquini, P.; Valle, J.W.F. url  doi
openurl 
  Title Cornering the revamped BMV model with neutrino oscillation data Type Journal Article
  Year 2017 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 774 Issue Pages 179-182  
  Keywords  
  Abstract Using the latest global determination of neutrino oscillation parameters from [1] we examine the status of the simplest revamped version of the BMV (Babu-Ma-Valle) model, proposed in [2]. The model predicts a striking correlation between the “poorly determined” atmospheric angle 623 and CP phase Sep, leading to either maximal CP violation or none, depending on the preferred 623 octants. We determine the allowed BMV parameter regions and compare with the general three-neutrino oscillation scenario. We show that in the BMV model the higher octant is possible only at 99% C. L., a stronger rejection than found in the general case. By performing quantitative simulations of forthcoming DUNE and T2HK experiments, using only the four “well-measured” oscillation parameters and the indication for normal mass ordering, we also map out the potential of these experiments to corner the model. The resulting global sensitivities are given in a robust form, that holds irrespective of the true values of the oscillation parameters.  
  Address [Chatterjee, Sabya Sachi] Inst Phys, Sachivalaya Marg, Bhubaneswar 751005, Orissa, India, Email: sabya@iopb.res.in;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000414973200025 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3404  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva