toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author ATLAS Collaboration (Aad, G. et al); Bernabeu Verdu, J.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M.J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia-Argos, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V.R.; March, L.; Marti-Garcia, S.; Miñano, M.; Mitsou, V.A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estañ, M.T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M. url  doi
openurl 
  Title Operation and performance of the ATLAS semiconductor tracker Type Journal Article
  Year 2014 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 9 Issue Pages P08009 - 73pp  
  Keywords Solid state detectors; Charge transport and multiplication in solid media; Particle tracking detectors (Solid-state detectors); Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc)  
  Abstract The semiconductor tracker is a silicon microstrip detector forming part of the inner tracking system of the ATLAS experiment at the LHC. The operation and performance of the semiconductor tracker during the first years of LHC running are described. More than 99% of the detector modules were operational during this period, with an average intrinsic hit efficiency of (99.74 +/- 0.04)%. The evolution of the noise occupancy is discussed, and measurements of the Lorentz angle, delta-ray production and energy loss presented. The alignment of the detector is found to be stable at the few-micron level over long periods of time. Radiation damage measurements, which include the evolution of detector leakage currents, are found to be consistent with predictions and are used in the verification of radiation background simulations.  
  Address [Jackson, P.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000341927600037 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1945  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M.J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V.R.; March, L.; Marti-Garcia, S.; Miñano, M.; Mitsou, V.A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estañ, M.T.; Qin, G.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M. url  doi
openurl 
  Title Monitoring and data quality assessment of the ATLAS liquid argon calorimeter Type Journal Article
  Year 2014 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 9 Issue Pages P07024 - 55pp  
  Keywords Particle identification methods; Calorimeters; Large detector systems for particle and astroparticle physics  
  Abstract The liquid argon calorimeter is a key component of the ATLAS detector installed at the CERN Large Hadron Collider. The primary purpose of this calorimeter is the measurement of electron and photon kinematic properties. It also provides a crucial input for measuring jets and missing transverse momentum. An advanced data monitoring procedure was designed to quickly identify issues that would affect detector performance and ensure that only the best quality data are used for physics analysis. This article presents the validation procedure developed during the 2011 and 2012 LHC data-taking periods, in which more than 98% of the proton-proton luminosity recorded by ATLAS at a centre-of-mass energy of 7-8 TeV had calorimeter data quality suitable for physics analysis.  
  Address [Jackson, P.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000340050700045 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1915  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M.J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V.R.; March, L.; Marti-Garcia, S.; Mitsou, V.A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estañ, M.T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J.A.; Vos, M. url  doi
openurl 
  Title A neural network clustering algorithm for the ATLAS silicon pixel detector Type Journal Article
  Year 2014 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 9 Issue Pages P09009 - 34pp  
  Keywords Particle tracking detectors; Particle tracking detectors (Solid-state detectors)  
  Abstract A novel technique to identify and split clusters created by multiple charged particles in the ATLAS pixel detector using a set of artificial neural networks is presented. Such merged clusters are a common feature of tracks originating from highly energetic objects, such as jets. Neural networks are trained using Monte Carlo samples produced with a detailed detector simulation. This technique replaces the former clustering approach based on a connected component analysis and charge interpolation. The performance of the neural network splitting technique is quantified using data from proton-proton collisions at the LHC collected by the ATLAS detector in 2011 and from Monte Carlo simulations. This technique reduces the number of clusters shared between tracks in highly energetic jets by up to a factor of three. It also provides more precise position and error estimates of the clusters in both the transverse and longitudinal impact parameter resolution.  
  Address [Jackson, P.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000343281300046 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1972  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Martinez-Vidal, F.; Oyanguren, A.; Ruiz Valls, P.; Sanchez Mayordomo, C. url  doi
openurl 
  Title Identification of beauty and charm quark jets at LHCb Type Journal Article
  Year 2015 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 10 Issue Pages P06013 - 29pp  
  Keywords Performance of High Energy Physics Detectors; Analysis and statistical methods  
  Abstract Identification of jets originating from beauty and charm quarks is important for measuring Standard Model processes and for searching for new physics. The performance of algorithms developed to select b- and c-quark jets is measured using data recorded by LHCb from proton-proton collisions at root s = 7TeV in 2011 and at root s = 8TeV in 2012. The efficiency for identifying a b (c) jet is about 65%(25%) with a probability for misidentifying a light-parton jet of 0.3% for jets with transverse momentum pT > 20GeV and pseudorapidity 2 : 2 < eta < 4.2. The dependence of the performance on the pT and eta of the jet is also measured.  
  Address [Bediaga, I.; De Miranda, J. M.; Ferreira Rodrigues, F.; Gomes, A.; Massafferri, A.; Osorio Rodrigues, B.; dos Reis, A. C.; Rodrigues, A. B.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000358004200029 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2314  
Permanent link to this record
 

 
Author Garonna, A.; Amaldi, U.; Bonomi, R.; Campo, D.; Degiovanni, A.; Garlasche, M.; Mondino, I.; Rizzoglio, V.; Verdu-Andres, S. url  doi
openurl 
  Title Cyclinac medical accelerators using pulsed C6+/H-2(+) ion sources Type Journal Article
  Year 2010 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 5 Issue Pages C09004 - 19pp  
  Keywords Instrumentation for particle-beam therapy; Instrumentation for hadron therapy; Ion sources (positive ions, negative ions, electron cyclotron resonance (ECR), electron beam (EBIS)); Acceleration cavities and magnets superconducting (high-temperature superconductor; radiation hardened magnets; normal-conducting; permanent magnet devices; wigglers and undulators)  
  Abstract Charged particle therapy, or so-called hadrontherapy, is developing very rapidly. There is large pressure on the scientific community to deliver dedicated accelerators, providing the best possible treatment modalities at the lowest cost. In this context, the Italian research Foundation TERA is developing fast-cycling accelerators, dubbed 'cyclinacs'. These are a combination of a cyclotron (accelerating ions to a fixed initial energy) followed by a high gradient linac boosting the ions energy up to the maximum needed for medical therapy. The linac is powered by many independently controlled klystrons to vary the beam energy from one pulse to the next. This accelerator is best suited to treat moving organs with a 4D multipainting spot scanning technique. A dual proton/carbon ion cyclinac is here presented. It consists of an Electron Beam Ion Source, a superconducting isochronous cyclotron and a high-gradient linac. All these machines are pulsed at high repetition rate (100-400 Hz). The source should deliver both C6+ and H-2(+) ions in short pulses (1.5 μs flat-top) and with sufficient intensity (at least 10(8) fully stripped carbon ions per pulse at 300 Hz). The cyclotron accelerates the ions to 120 MeV/u. It features a compact design (with superconducting coils) and a low power consumption. The linac has a novel C-band high-gradient structure and accelerates the ions to variable energies up to 400 MeV/u. High RF frequencies lead to power consumptions which are much lower than the ones of synchrotrons for the same ion extraction energy. This work is part of a collaboration with the CLIC group, which is working at CERN on high-gradient electron-positron colliders.  
  Address [Garonna, A.; Amaldi, U.; Bonomi, R.; Campo, D.; Degiovanni, A.; Garlasche, M.; Mondino, I.; Rizzoglio, V.; Andres, S. Verdu] TERA Fdn, I-28100 Novara, Italy, Email: Adriano.Garonna@cern.ch  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000283796100011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 327  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Alvarez Piqueras, D.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M.J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V.R.; Marti-Garcia, S.; Mitsou, V.A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estañ, M.T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J.A.; Vos, M. url  doi
openurl 
  Title Performance of b-jet identification in the ATLAS experiment Type Journal Article
  Year 2016 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 11 Issue Pages P04008 - 126pp  
  Keywords Large detector systems for particle and astroparticle physics; Large detector-systems performance; Pattern recognition, cluster finding, calibration and fitting methods; Performance of High Energy Physics Detectors  
  Abstract The identification of jets containing b hadrons is important for the physics programme of the ATLAS experiment at the Large Hadron Collider. Several algorithms to identify jets containing b hadrons are described, ranging from those based on the reconstruction of an inclusive secondary vertex or the presence of tracks with large impact parameters to combined tagging algorithms making use of multi-variate discriminants. An independent b-tagging algorithm based on the reconstruction of muons inside jets as well as the b-tagging algorithm used in the online trigger are also presented. The b-jet tagging efficiency, the c-jet tagging efficiency and the mistag rate for light flavour jets in data have been measured with a number of complementary methods. The calibration results are presented as scale factors defined as the ratio of the efficiency (or mistag rate) in data to that in simulation. In the case of b jets, where more than one calibration method exists, the results from the various analyses have been combined taking into account the statistical correlation as well as the correlation of the sources of systematic uncertainty.  
  Address [Jackson, P.; Lee, L.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000375746400027 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2684  
Permanent link to this record
 

 
Author Poley, L.; Blue, A.; Bloch, I.; Buttar, C.; Fadeyev, V.; Fernandez-Tejero, J.; Fleta, C.; Hacker, J.; Lacasta, C.; Miñano, M.; Renzmann, M.; Rossi, E.; Sawyer, C.; Sperlich, D.; Stegler, M.; Ullan, M.; Unno, Y. url  doi
openurl 
  Title Mapping the depleted area of silicon diodes using a micro-focused X-ray beam Type Journal Article
  Year 2019 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 14 Issue Pages P03024 - 14pp  
  Keywords Si microstrip and pad detectors; Detector design and construction technologies and materials; Particle tracking detectors (Solid-state detectors); Radiation-hard detectors  
  Abstract For the Phase-II Upgrade of the ATLAS detector at CERN, the current ATLAS Inner Detector will be replaced with the ATLAS Inner Tracker (ITk). The ITk will be an all-silicon detector, consisting of a pixel tracker and a strip tracker. Sensors for the ITk strip tracker are required to have a low leakage current up to bias voltages of 500V to maintain a low noise and power dissipation. In order to minimise sensor leakage currents, particularly in the high-radiation environment inside the ATLAS detector, sensors are foreseen to be operated at low temperatures and to be manufactured from wafers with a high bulk resistivity of several k Omega.cm. Simulations showed the electric field inside sensors with high bulk resistivity to extend towards the sensor edge, which could lead to increased surface currents for narrow dicing edges. In order to map the electric field inside biased silicon sensors with high bulk resistivity, three diodes from ATLAS silicon strip sensor prototype wafers were studied with a monochromatic, micro-focused X-ray beam at the Diamond Light Source (Didcot, U.K.). For all devices under investigation, the electric field inside the diode was mapped and its dependence on the applied bias voltage was studied.  
  Address [Poley, L.] Lawrence Berkeley Natl Lab, Cyclotron Rd, Berkeley, CA 94720 USA, Email: Anne-Luise.Poley@desy.de  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000463330900012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3973  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aaboud, M. et al); Alvarez Piqueras, D.; Aparisi Pozo, J.A.; Bailey, A.J.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo, F.L.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Ferrer, A.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Higon-Rodriguez, E.; Jimenez Pena, J.; Lacasta, C.; Lozano Bahilo, J.J.; Madaffari, D.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Miñano, M.; Mitsou, V.A.; Rodriguez Bosca, S.; Rodriguez Rodriguez, D.; Ruiz-Martinez, A.; Salt, J.; Santra, A.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M. url  doi
openurl 
  Title Electron and photon energy calibration with the ATLAS detector using 2015-2016 LHC proton-proton collision data Type Journal Article
  Year 2019 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 14 Issue Pages P03017 - 60pp  
  Keywords Calorimeter methods; Pattern recognition, cluster finding, calibration and fitting methods; Performance of High Energy Physics Detectors  
  Abstract This paper presents the electron and photon energy calibration obtained with the ATLAS detector using about 36 fb(-1) of LHC proton-proton collision data recorded at root s = 13 TeV in 2015 and 2016. The different calibration steps applied to the data and the optimization of the reconstruction of electron and photon energies are discussed. The absolute energy scale is set using a large sample of Z boson decays into electron-positron pairs. The systematic uncertainty in the energy scale calibration varies between 0.03% to 0.2% in most of the detector acceptance for electrons with transverse momentum close to 45 GeV. For electrons with transverse momentum of 10 GeV the typical uncertainty is 0.3% to 0.8% and it varies between 0.25% and 1% for photons with transverse momentum around 60 GeV. Validations of the energy calibration with J/psi -> e(+)e(-) decays and radiative Z boson decays are also presented.  
  Address [Duvnjak, D.; Jackson, P.; Oliver, J. L.; Petridis, A.; Qureshi, A.; Sharma, A. S.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000463330900005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3972  
Permanent link to this record
 

 
Author NEXT Collaboration (McDonald, A.D. et al); Alvarez, V.; Benlloch-Rodriguez, J.M.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Herrero, P.; Kekic, M.; Lopez-March, N.; Martinez-Lema, G.; Muñoz Vidal, J.; Novella, P.; Palmeiro, B.; Perez, J.; Querol, M.; Renner, J.; Romo-Luque, C.; Sorel, M.; Uson, A.; Yahlali, N. url  doi
openurl 
  Title Electron drift and longitudinal diffusion in high pressure xenon-helium gas mixtures Type Journal Article
  Year 2019 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 14 Issue Pages P08009 - 19pp  
  Keywords Charge transport and multiplication in gas; Gaseous imaging and tracking detectors  
  Abstract We report new measurements of the drift velocity and longitudinal diffusion coefficients of electrons in pure xenon gas and in xenon-helium gas mixtures at 1-9 bar and electric field strengths of 50-300 V/cm. In pure xenon we find excellent agreement with world data at all E/P, for both drift velocity and diffusion coefficients. However, a larger value of the longitudinal diffusion coefficient than theoretical predictions is found at low E/P in pure xenon, below the range of reduced fields usually probed by TPC experiments. A similar effect is observed in xenon-helium gas mixtures at somewhat larger E/P. Drift velocities in xenon-helium mixtures are found to be theoretically well predicted. Although longitudinal diffusion in xenon-helium mixtures is found to be larger than anticipated, extrapolation based on the measured longitudinal diffusion coefficients suggest that the use of helium additives to reduce transverse diffusion in xenon gas remains a promising prospect.  
  Address [McDonald, A. D.; Woodruff, K.; Al Atoum, B.; Jones, B. J. P.; Laing, A.; Nygren, D. R.; Rogers, L.] Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA, Email: austin.mcdonald@uta.edu  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000482373600006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4118  
Permanent link to this record
 

 
Author Ortiz Arciniega, J.L.; Carrio, F.; Valero, A. url  doi
openurl 
  Title FPGA implementation of a deep learning algorithm for real-time signal reconstruction in particle detectors under high pile-up conditions Type Journal Article
  Year 2019 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 14 Issue Pages P09002 - 13pp  
  Keywords Data processing methods; Pattern recognition; cluster finding; calibration and fitting methods; Simulation methods and programs  
  Abstract The analog signals generated in the read-out electronics of particle detectors are shaped prior to the digitization in order to improve the signal to noise ratio (SNR). The real amplitude of the analog signal is then obtained using digital filters, which provides information about the energy deposited in the detector. The classical digital filters have a good performance in ideal situations with Gaussian electronic noise and no pulse shape distortion. However, high-energy particle colliders, such as the Large Hadron Collider (LHC) at CERN, can produce multiple simultaneous events, which produce signal pileup. The performance of classical digital filters deteriorates in these conditions since the signal pulse shape gets distorted. In addition, this type of experiments produces a high rate of collisions, which requires high throughput data acquisitions systems. In order to cope with these harsh requirements, new read-out electronics systems are based on high-performance FPGAs, which permit the utilization of more advanced real-time signal reconstruction algorithms. In this paper, a deep learning method is proposed for real-time signal reconstruction in high pileup particle detectors. The performance of the new method has been studied using simulated data and the results are compared with a classical FIR filter method. In particular, the signals and FIR filter used in the ATLAS Tile Calorimeter are used as benchmark. The implementation, resources usage and performance of the proposed Neural Network algorithm in FPGA are also presented.  
  Address [Ortiz Arciniega, J. L.] Univ Valencia, Avinguda Univ S-N, Burjassot, Spain, Email: orarjo@alumni.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000486990000002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4150  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva