toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Abbar, S.; Capozzi, F. url  doi
openurl 
  Title Suppression of fast neutrino flavor conversions occurring at large distances in core-collapse supernovae Type Journal Article
  Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 051 - 13pp  
  Keywords supernova neutrinos; core-collapse supernovae; neutrino astronomy; supernovas  
  Abstract Neutrinos propagating in dense neutrino media such as core-collapse supernovae and neutron star merger remnants can experience the so-called fast flavor conversions on scales much shorter than those expected in vacuum. A very generic class of fast flavor instabilities is the ones which are produced by the backward scattering of neutrinos off the nuclei at relatively large distances from the supernova core. In this study we demonstrate that despite their ubiquity, such fast instabilities are unlikely to cause significant flavor conversions if the population of neutrinos in the backward direction is not large enough. Indeed, the scattering-induced instabilities can mostly impact the neutrinos traveling in the backward direction, which represent only a small fraction of neutrinos at large radii. We show that this can be explained by the shape of the unstable flavor eigenstates, which can be extremely peaked at the backward angles.  
  Address [Abbar, Sajad] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, Fohringer Ring 6, D-80805 Munich, Germany, Email: abbar@mpp.mpg.de;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000776551600002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5186  
Permanent link to this record
 

 
Author Blanton, T.D.; Romero-Lopez, F.; Sharpe, S.R. url  doi
openurl 
  Title Implementing the three-particle quantization condition for pi(+)pi K-+(+) and related systems Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages 098 - 49pp  
  Keywords Lattice QCD; Lattice Quantum Field Theory  
  Abstract Recently, the formalism needed to relate the finite-volume spectrum of systems of nondegenerate spinless particles has been derived. In this work we discuss a range of issues that arise when implementing this formalism in practice, provide further theoretical results that can be used to check the implementation, and make available codes for implementing the three-particle quantization condition. Specifically, we discuss the need to modify the upper limit of the cutoff function due to the fact that the left-hand cut in the scattering amplitudes for two nondegenerate particles moves closer to threshold; we describe the decomposition of the three-particle amplitude K-df,K-3 into the matrix basis used in the quantization condition, including both s and p waves, with the latter arising in the amplitude for two nondegenerate particles; we derive the threshold expansion for the lightest three-particle state in the rest frame up to O(1/L-5); and we calculate the leading-order predictions in chiral perturbation theory for K-df,K-3 in the pi(+)pi K-+(+) and pi+K+K+ systems. We focus mainly on systems with two identical particles plus a third that is different (“2+1” systems). We describe the formalism in full detail, and present numerical explorations in toy models, in particular checking that the results agree with the threshold expansion, and making a prediction for the spectrum of pi(+)pi K-+(+) levels using the two- and three-particle interactions predicted by chiral perturbation theory.  
  Address [Blanton, Tyler D.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA, Email: blantonl@umd.edu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000755933600005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5134  
Permanent link to this record
 

 
Author Afonso, V.I.; Mora-Perez, G.; Olmo, G.J.; Orazi, E.; Rubiera-Garcia, D. url  doi
openurl 
  Title An infinite class of exact rotating black hole metrics of modified gravity Type Journal Article
  Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 052 - 14pp  
  Keywords Exact solutions; black holes and black hole thermodynamics in GR and beyond; Gauss-Bonnet-Lovelock-Horndeski-Palatini etc gravity theories; modified gravity  
  Abstract We build an infinite class of exact axisymmetric solutions of a metric-affine gravity theory, namely, Eddington-inspired Born-Infeld gravity, coupled to an anisotropic fluid as a matter source. The solution-generating method employed is not unique of this theory but can be extended to other Ricci-Based Gravity theories (RBGs), a class of theories built out of contractions of the Ricci tensor with the metric. This method exploits a correspondence between the space of solutions of General Relativity and that of RBGs, and is independent of the symmetries of the problem. For the particular case in which the fluid is identified with non-linear electromagnetic fields we explicitly derive the corresponding axisymmetric solutions. Finally, we use this result to work out the counterpart of the Kerr-Newman black hole when Maxwell electrodynamics is set on the metric-affine side. Our results open up an exciting new avenue for testing new gravitational phenomenology in the fields of gravitational waves and shadows out of rotating black holes.  
  Address [Afonso, Victor, I] Univ Fed Campina Grande, Unidade Academ Fis, BR-58429900 Campina Grande, Paraiba, Brazil, Email: viafonso@df.ufcg.edu.br;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000776994500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5185  
Permanent link to this record
 

 
Author Moretti, F.; Bombacigno, F.; Montani, G. url  doi
openurl 
  Title The Role of Longitudinal Polarizations in Horndeski and Macroscopic Gravity: Introducing Gravitational Plasmas Type Journal Article
  Year 2021 Publication Universe Abbreviated Journal Universe  
  Volume 7 Issue 12 Pages 496 - 28pp  
  Keywords gravitational waves; gauge-invariant method; Landau damping; macroscopic gravity  
  Abstract We discuss some general and relevant features of longitudinal gravitational modes in Horndeski gravity and their interaction with matter media. Adopting a gauge-invariant formulation, we clarify how massive scalar and vector fields can induce additional transverse and longitudinal excitations, resulting in breathing, vector, and longitudinal polarizations. We review, then, the interaction of standard gravitational waves with a molecular medium, outlining the emergence of effective massive gravitons, induced by the net quadrupole moment due to molecule deformation. Finally, we investigate the interaction of the massive mode in Horndeski gravity with a noncollisional medium, showing that Landau damping phenomenon can occur in the gravitational sector as well. That allows us to introduce the concept of “gravitational plasma”, where inertial forces associated with the background field play the role of cold ions in electromagnetic plasma.  
  Address [Moretti, Fabio; Montani, Giovanni] Sapienza Univ Rome, Dept Phys, Ple Aldo Moro 5, I-00185 Rome, Italy, Email: fabio.moretti@uniroma1.it;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000741918900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5076  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J. url  doi
openurl 
  Title Searches for rare B-s(0) and B-0 decays into four muons Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 109 - 27pp  
  Keywords B Physics; Branching fraction; Flavour Changing Neutral Currents; Hadron-Hadron Scattering; Rare Decay  
  Abstract Searches for rare B-s(0) and B-0 decays into four muons are performed using proton-proton collision data recorded by the LHCb experiment, corresponding to an integrated luminosity of 9 fb(-1). Direct decays and decays via light scalar and J/psi resonances are considered. No evidence for the six decays searched for is found and upper limits at the 95% confidence level on their branching fractions ranging between 1.8 x 10(-10) and 2.6 x 10(-9) are set.  
  Address [Leite, J. Baptista; Bediaga, I; Torres, M. Cruz; De Miranda, J. M.; dos Reis, A. C.; Falcao, L. N.; Gomes, A.; Massafferri, A.; Machado, D. Torres] Ctr Brasileiro Pesquisas Fis CBPF, Rio De Janeiro, Brazil, Email: cliff@hep.phy.cam.ac.uk  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000770623300007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5178  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva