toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Albaladejo, M.; Fernandez-Soler, P.; Nieves, J.; Ortega, P.G. url  doi
openurl 
  Title Contribution of constituent quark model c(s)over-bar states to the dynamics of the D*s0 (2317) and Ds1(2460) resonances Type Journal Article
  Year 2018 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 78 Issue 9 Pages 722 - 22pp  
  Keywords  
  Abstract The masses of the D*(s0) (2317) and D-s1(2460) resonances lie below the DK and D* K thresholds respectively, which contradicts the predictions of naive quark models and points out to non-negligible effects of the D(*) K loops in the dynamics of the even-parity scalar (J(pi) = 0(+)) and axial-vector (J(pi) = 1(+)) c (s) over bar systems. Recent lattice QCD studies, incorporating the effects of the D(*) K channels, analyzed these spin-parity sectors and correctly described the D*(s0)(2317) – D-s1(2460) mass splitting. Motivated by such works, we study the structure of the D*(s0)(2317) and D-s1(2460) resonances in the framework of an effective field theory consistent with heavy quark spin symmetry, and that incorporates the interplay between D(*) K meson-meson degrees of freedom and bare P-wave c (s) over bar states predicted by constituent quark models. We extend the scheme to finite volumes and fit the strength of the coupling between both types of degrees of freedom to the available lattice levels, which we successfully describe. We finally estimate the size of the D(*) K two-meson components in the D*(s0)(2317) and D-s1(2460) resonances, and we conclude that these states have a predominantly hadronic-molecular structure, and that it should not be tried to accommodate these mesons within c (s) over bar constituent quark model patterns.  
  Address [Albaladejo, Miguel] Univ Murcia, Dept Fis, E-30071 Murcia, Spain, Email: albaladejo@um.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000443822000003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3714  
Permanent link to this record
 

 
Author Yao, D.L.; Fernandez-Soler, P.; Albaladejo, M.; Guo, F.K.; Nieves, J. url  doi
openurl 
  Title Heavy-to-light scalar form factors from Muskhelishvili-Omnes dispersion relations Type Journal Article
  Year 2018 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 78 Issue 4 Pages 310 - 26pp  
  Keywords  
  Abstract By solving the Muskhelishvili-Omnes integral equations, the scalar form factors of the semileptonic heavy meson decays D -> pi(l) over bar nu(l), D -> (K) over bar(l) over bar nu(l), (K) over bar -> pi(l) over bar nu(l) and (B) over bar (s) -> Kl (nu) over bar (l) are simultaneously studied. As input, we employ unitarized heavy meson-Goldstone boson chiral coupled-channel amplitudes for the energy regions not far from thresholds, while, at high energies, adequate asymptotic conditions are imposed. The scalar form factors are expressed in terms of Omn\`es matrices multiplied by vector polynomials, which contain some undetermined dispersive subtraction constants. We make use of heavy quark and chiral symmetries to constrain these constants, which are fitted to lattice QCD results both in the charm and the bottom sectors, and in this latter sector to the light-cone sum rule predictions close to q(2)=0 as well. We find a good simultaneous description of the scalar form factors for the four semileptonic decay reactions. From this combined fit, and taking advantage that scalar and vector form factors are equal at q(2)=0, we obtain |V-cd| = 0.244 +/- 0.022, |V-cs| = 0.945 +/- 0.041 and |V-ub| = (4.3 +/- 0.7)x10(-3) for the involved Cabibbo-Kobayashi-Maskawa (CKM) matrix elements. In addition, we predict the following vector form factors at q(2) = 0: |f(+)(D ->eta)(0)| = 0.01 +/- 0.05, |f(+)(Ds ->eta)(0)| = 0.50 +/- 0.08, |f(+)(Ds ->eta)(0)| = 0.73 +/- 0.03 and|f(+)((B) over bar ->eta)(0)| = 0.82 +/- 0.08, which might serve as alternatives to determine the CKM elements when experimental measurements of the corresponding differential decay rates become available. Finally, we predict the different form factors above the q(2)-regions accessible in the semileptonic decays, up to moderate energies amenable to be described using the unitarized coupled-channel chiral approach.  
  Address [Yao, D. -L.; Fernandez-Soler, P.; Nieves, J.] UV, Inst Invest Paterna, Ctr Mixto, Inst Fis Corpuscular,CSIC, Apartado 22085, Valencia, Spain, Email: deliang.yao@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000430575000006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3568  
Permanent link to this record
 

 
Author Du, M.L.; Albaladejo, M.; Fernandez-Soler, P.; Guo, F.K.; Hanhart, C.; Meissner, U.G.; Nieves, J.; Yao, D.L. url  doi
openurl 
  Title Towards a new paradigm for heavy-light meson spectroscopy Type Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 98 Issue 9 Pages 094018 - 8pp  
  Keywords  
  Abstract Since 2003 many new hadrons, including the lowest-lying positive-parity charm-strange mesons D*(s0) (2317) and D-s1 (2460), have been observed that do not conform with quark-model expectations. It was recently demonstrated that various puzzles in the charm-meson spectrum find a natural resolution if the SU(3) multiplets for the lightest scalar and axial-vector states, among them the D*(s0) (2317) and the D-s1 (2460), owe their existence to the nonperturbative dynamics of Goldstone-boson scattering off D-(s) and D*((s)) mesons. Most importantly the ordering of the lightest strange and nonstrange scalars becomes natural. We demonstrate for the first time that this mechanism is strongly supported by the recent high quality data on the B- -> D+ pi(-)pi(-) provided by the LHCb experiment. This implies that the lowest quark-model positive-parity charm mesons, together with their bottom counterparts, if realized in nature, do not form the ground-state multiplet. This is similar to the pattern that has been established for the scalar mesons made from light up, down, and strange quarks, where the lowest multiplet is considered to be made of states not described by the quark model. In a broader view, the hadron spectrum must be viewed as more than a collection of quark-model states.  
  Address [Du, Meng-Lin; Meissner, Ulf-G.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany, Email: fkguo@itp.ac.cn  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000451000200003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3817  
Permanent link to this record
 

 
Author Albaladejo, M.; Guo, F.K.; Hanhart, C.; Meissner, U.G.; Nieves, J.; Nogga, A.; Yang, Z. url  doi
openurl 
  Title Note on X(3872) production at hadron colliders and its molecular structure Type Journal Article
  Year 2017 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C  
  Volume 41 Issue 12 Pages 121001 - 3pp  
  Keywords X(3872); hadronic molecules; exotic hadrons  
  Abstract The production of the X (3872) as a hadronic molecule in hadron colliders is clarified. We show that the conclusion of Bignamini et al., Phys. Rev. Lett. 103 (2009) 162001, that the production of the X(3872) at high pT implies a non-molecular structure, does not hold. In particular, using the well understood properties of the deuteron wave function as an example, we identify the relevant scales in the production process.  
  Address [Albaladejo, Miguel] Univ Murcia, Dept Fis, E-30071 Murcia, Spain  
  Corporate Author Thesis  
  Publisher Chinese Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1674-1137 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000417112000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3397  
Permanent link to this record
 

 
Author Albaladejo, M.; Moussallam, B. url  doi
openurl 
  Title Extended chiral Khuri-Treiman formalism for eta -> 3 pi and the role of the a(0)(980), f(0)(980) resonances Type Journal Article
  Year 2017 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 77 Issue 8 Pages 508 - 23pp  
  Keywords  
  Abstract Recent experiments on eta -> 3 pi decays have provided an extremely precise knowledge of the amplitudes across the Dalitz region which represent stringent constraints on theoretical descriptions. We reconsider an approach in which the low-energy chiral expansion is assumed to be optimally convergent in an unphysical region surrounding the Adler zero, and the amplitude in the physical region is uniquely deduced by an analyticity-based extrapolation using the Khuri-Treiman dispersive formalism. We present an extension of the usual formalism which implements the leading inelastic effects from the K (K) over bar channel in the final-state pi pi interaction as well as in the initial-state eta pi interaction. The constructed amplitude has an enlarged region of validity and accounts in a realistic way for the influence of the two light scalar resonances f(0)(980) and a(0)(980) in the dispersive integrals. It is shown that the effect of these resonances in the low-energy region of the eta -> 3 pi decay is not negligible, in particular for the 3 pi(0) mode, and improves the description of the energy variation across the Dalitz plot. Some remarks are made on the scale dependence and the value of the double quark mass ratio Q.  
  Address [Albaladejo, M.] Univ Valencia, CSIC, Ctr Mixto, Inst Fis Corpuscular IFIC, Valencia, Spain, Email: moussall@ipno.in2p3.fr  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000406687400002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3229  
Permanent link to this record
 

 
Author Albaladejo, M.; Fernandez-Soler, P.; Nieves, J.; Ortega, P.G. url  doi
openurl 
  Title Lowest-lying even-parity (B)over-bar(s) mesons: heavy-quark spin-flavor symmetry, chiral dynamics, and constituent quark-model bare masses Type Journal Article
  Year 2017 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 77 Issue 3 Pages 170 - 9pp  
  Keywords  
  Abstract The discovery of the D*(s0)(2317) and D-s1(2460) resonances in the charmed-strange meson spectra revealed that formerly successful constituent quark models lose predictability in the vicinity of two-meson thresholds. The emergence of non-negligible effects due to meson loops requires an explicit evaluation of the interplay between Q (q) over bar and (Q (q) over bar)(q (q) over bar) Fock components. In contrast to the c (s) over bar sector, there is no experimental evidence of J(P) = 0(+), 1(+) bottom-strange states yet. Motivated by recent lattice studies, in this work the heavy-quark partners of the D*(s0)(2317) and D-s1(2460) states are analyzed within a heavy meson chiral unitary scheme. As a novelty, the coupling between the constituent quark-model P-wave (B) over bar (s) scalar and axial mesons and the (B) over bar (()*()) K channels is incorporated employing an effective interaction, consistent with heavy-quark spin symmetry, constrained by the lattice energy levels.  
  Address [Albaladejo, M.; Fernandez-Soler, P.; Nieves, J.; Ortega, P. G.] Univ Valencia, Inst Invest Paterna, Ctr Mixto CSIC, Inst Fis Corpuscular IFIC, Aptd 22085, Valencia 46071, Spain, Email: ortegapg@gmail.com  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000400018400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3076  
Permanent link to this record
 

 
Author Albaladejo, M.; Daub, J.T.; Hanhart, C.; Kubis, B.; Moussallamd, B. url  doi
openurl 
  Title How to employ (B)over-bar(d)(0) -> J/psi(pi eta, (K)over-barK) decays to extract information on pi eta scattering Type Journal Article
  Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 04 Issue 4 Pages 010 - 28pp  
  Keywords Chiral Lagrangians; Heavy Quark Physics  
  Abstract We demonstrate that dispersion theory allows one to deduce crucial information on pi eta scattering from the final-state interactions of the light mesons visible in the spectral distributions of the decays (B) over bar (0)(d) -> J/psi(pi(0)eta, K+K-, K-0 (K) over bar (0)). Thus high-quality measurements of these differential observables are highly desired. The corresponding rates are predicted to be of the same order of magnitude as those for (B) over bar (0)(d) -> J/psi pi(+)pi(-) measured recently at LHCb, letting the corresponding measurement appear feasible.  
  Address [Albaladejo, M.] Ctr Mixto CSIC Univ Valencia, Inst Fis Corpuscular IFIC, Inst Invest Paterna, Aptdo 22085, Valencia 46071, Spain, Email: Miguel.Albaladejo@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000398449400002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3073  
Permanent link to this record
 

 
Author Albaladejo, M.; Fernandez-Soler, P.; Guo, F.K.; Nieves, J. url  doi
openurl 
  Title Two-pole structure of the D-0*(2400) Type Journal Article
  Year 2017 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 767 Issue Pages 465-469  
  Keywords  
  Abstract The so far only known charmed non-strange scalar meson is dubbed as D-0(*)(2400) in the Review of Particle Physics. We show, within the framework of unitarized chiral perturbation theory, that there are in fact two (I = 1/2, J(P) = 0(+)) poles in the region of the D-0(*)( 2400) in the coupled-channel D pi, D eta and D-s (K) over bar scattering amplitudes. With all the parameters previously fixed, we predict the energy levels for the coupled-channel system in a finite volume, and find that they agree remarkably well with recent lattice QCD calculations. This successful description of the lattice data is regarded as a strong evidence for the two-pole structure of the D-0(*)( 2400). With the physical quark masses, the poles are located at (2105(-8)(+6) – i102(-12)(+10)) MeV and (2451(-26)(+36) – i134(-8)(+7)) MeV, with the largest couplings to the D pi and D-s (K) over bar channels, respectively. Since the higher pole is close to the D-s (K) over bar threshold, we expect it to show up as a threshold enhancement in the D-s (K) over bar invariant mass distribution. This could be checked by high-statistic data in future experiments. We also show that the lower pole belongs to the same SU(3) multiplet as the D-s0(*)(2317) state. Predictions for partners in the bottom sector are also given.  
  Address [Albaladejo, Miguel; Fernandez-Soler, Pedro; Nieves, Juan] Univ Valencia, Ctr Mixto CSIC, Inst Invest Paterna, Inst Fis Corpuscular IFIC, Aptd 22085, E-46071 Valencia, Spain, Email: albaladejo@um.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000397861700070 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3025  
Permanent link to this record
 

 
Author Albaladejo, M.; Fernandez-Soler, P.; Nieves, J. url  doi
openurl 
  Title Z(c)(3900): confronting theory and lattice simulations Type Journal Article
  Year 2016 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 76 Issue 10 Pages 573 - 9pp  
  Keywords  
  Abstract We consider a recent T -matrix analysis by Albaladejo et al. (Phys Lett B 755: 337, 2016), which accounts for the J/psi pi and D*(D) over bar coupled-channels dynamics, and which successfully describes the experimental information concerning the recently discovered Z(c)(3900)(+/-). Within such scheme, the data can be similarly well described in two different scenarios, where Z(c)(3900) is either a resonance or a virtual state. To shed light into the nature of this state, we apply this formalism in a finite box with the aim of comparing with recent Lattice QCD (LQCD) simulations. We see that the energy levels obtained for both scenarios agree well with those obtained in the single-volume LQCD simulation reported in Prelovsek et al. (Phys Rev D 91: 014504, 2015), thus making it difficult to disentangle the two possibilities. We also study the volume dependence of the energy levels obtained with our formalism and suggest that LQCD simulations performed at several volumes could help in discerning the actual nature of the intriguing Z(c)(3900) state.  
  Address [Albaladejo, Miguel; Fernandez-Soler, Pedro; Nieves, Juan] Univ Valencia, Inst Fis Corpuscular IFIC, Ctr Mixto CSIC, Inst Invest Paterna, Aptdo 22085, Valencia 46071, Spain, Email: miguelalbaladejo@gmail.com  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000388981700001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2877  
Permanent link to this record
 

 
Author Albaladejo, M.; Nieves, J.; Oset, E.; Jido, D. url  doi
openurl 
  Title Ds0*(2317) and DK scattering in B decays from BaBar and LHCb data Type Journal Article
  Year 2016 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 76 Issue 6 Pages 300 - 8pp  
  Keywords  
  Abstract We study the experimental DK invariant mass spectra of the reactions B+ -> (D) over bar (DK+)-D-0-K-0, B-0 -> D-(DK+)-K-0 (measured by the BaBar collaboration) and B-s -> pi(+DK-)-K-0 measured by the LHCb collaboration), where an enhancement right above the threshold is seen. We show that this enhancement is due to the presence of D-s0*(2317), which is a D K bound state in the I (J(P)) = 0(0(+)) sector. We employ a unitarized amplitude with an interaction potential fixed by heavy meson chiral perturbation theory. We obtain a mass M-Ds0* = 2315(-17) (+12 +10)(-5) MeV, and we also show, by means of theWeinberg compositeness condition, that the DK component in the wave function of this state is P-DK = 70(-6 -8)(+4 +4) %, where the first (second) error is statistical (systematic).  
  Address [Albaladejo, M.; Nieves, J.; Oset, E.] Univ Valencia, Inst Fis Corpuscular IFIC, Inst Invest Paterna, Ctr Mixto,CSIC, Aptd 22085, Valencia 46071, Spain, Email: miguelalbaladejo@gmail.com  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000386034600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2841  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva