|   | 
Details
   web
Records
Author LHCb Collaboration (Aaij, R. et al); Martinez-Vidal, F.; Oyanguren, A.; Ruiz Valls, P.; Sanchez Mayordomo, C.
Title Determination of the quark coupling strength vertical bar V-ub vertical bar using baryonic decays Type Journal Article
Year 2015 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 11 Issue 9 Pages 743-747
Keywords
Abstract In the Standard Model of particle physics, the strength of the couplings of the b quark to the u and c quarks, vertical bar V-ub vertical bar and vertical bar V-ub vertical bar, are governed by the coupling of the quarks to the Higgs boson. Using data from the LHCb experiment at the Large Hadron Collider, the probability for the Lambda(0)(b) baryon to decay into the p mu(-)(nu) over bar (mu) final state relative to the Lambda(+)(c)mu(-)(nu) over bar (mu) final state is measured. Combined with theoretical calculations of the strong interaction and a previously measured value of vertical bar V-ub vertical bar, the first vertical bar V-ub vertical bar measurement to use a baryonic decay is performed. This measurement is consistent with previous determinations of vertical bar V-ub vertical bar using B meson decays to specific final states and confirms the existing incompatibility with those using an inclusive sample of final states.
Address [Bediaga, I.; De Miranda, J. M.; Ferreira Rodrigues, F.; Gomes, A.; Massafferri, A.; Rodrigues, B. Osorio; dos Reis, A. C.; Rodrigues, A. B.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil, Email: u.egede@imperial.ac.uk
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1745-2473 ISBN Medium
Area Expedition Conference
Notes WOS:000360709200018 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2388
Permanent link to this record
 

 
Author CMS and LHCb Collaborations (Khachatryan, V. et al); Martinez-Vidal, F.; Oyanguren, A.; Ruiz Valls, P.; Sanchez Mayordomo, C.
Title Observation of the rare B-s(0)->mu(+)mu(-) decay from the combined analysis of CMS and LHCb data Type Journal Article
Year 2015 Publication Nature Abbreviated Journal Nature
Volume 522 Issue 7554 Pages 68-72
Keywords
Abstract The standard model of particle physics describes the fundamental particles and their interactions via the strong, electromagnetic and weak forces. It provides precise predictions for measurable quantities that can be tested experimentally. The probabilities, or branching fractions, of the strange B meson (B-s(0)) and the B-0 meson decaying into two oppositely charged muons (mu(+) and mu(-)) are especially interesting because of their sensitivity to theories that extend the standard model. The standard model predicts that the B-s(0)->mu(+)mu(-) and B-0 ->mu(+)mu(-) decays are very rare, with about four of the former occurring for every billion B-s(0) mesons produced, and one of the latter occurring for every ten billion B-0 mesons(1). A difference in the observed branching fractions with respect to the predictions of the standard model would provide a direction in which the standard model should be extended. Before the Large Hadron Collider (LHC) at CERN2 started operating, no evidence for either decay mode had been found. Upper limits on the branching fractions were an order of magnitude above the standard model predictions. The CMS (Compact Muon Solenoid) and LHCb(Large Hadron Collider beauty) collaborations have performed a joint analysis of the data from proton-proton collisions that they collected in 2011 at a centre-of-mass energy of seven teraelectronvolts and in 2012 at eight teraelectronvolts. Here we report the first observation of the B-s(0)->mu(+)mu(-) decay, with a statistical significance exceeding six standard deviations, and the best measurement so far of its branching fraction. Furthermore, we obtained evidence for the B-0 ->mu(+)mu(-) decay with a statistical significance of three standard deviations. Both measurements are statistically compatible with standard model predictions and allow stringent constraints to be placed on theories beyond the standard model. The LHC experiments will resume taking data in 2015, recording proton-proton collisions at a centre-of-mass energy of 13 teraelectronvolts, which will approximately double the production rates of B-s(0) and B-0 mesons and lead to further improvements in the precision of these crucial tests of the standard model.
Address [Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes WOS:000355543400030 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2250
Permanent link to this record
 

 
Author Khachatryan, M. et al, Coloma, P.
Title Electron-beam energy reconstruction for neutrino oscillation measurements Type Journal Article
Year 2021 Publication Nature Abbreviated Journal Nature
Volume 599 Issue 7886 Pages 565-570
Keywords
Abstract Neutrinos exist in one of three types or 'flavours'-electron, muon and tau neutrinos-and oscillate from one flavour to another when propagating through space. This phenomena is one of the few that cannot be described using the standard model of particle physics (reviewed in ref. (1)), and so its experimental study can provide new insight into the nature of our Universe (reviewed in ref. (2)). Neutrinos oscillate as a function of their propagation distance (L) divided by their energy (E). Therefore, experiments extract oscillation parameters by measuring their energy distribution at different locations. As accelerator-based oscillation experiments cannot directly measure E, the interpretation of these experiments relies heavily on phenomenological models of neutrino-nucleus interactions to infer E. Here we exploit the similarity of electron-nucleus and neutrino-nucleus interactions, and use electron scattering data with known beam energies to test energy reconstruction methods and interaction models. We find that even in simple interactions where no pions are detected, only a small fraction of events reconstruct to the correct incident energy. More importantly, widely used interaction models reproduce the reconstructed energy distribution only qualitatively and the quality of the reproduction varies strongly with beam energy. This shows both the need and the pathway to improve current models to meet the requirements of next-generation, high-precision experiments such as Hyper-Kamiokande (Japan)(3) and DUNE (USA)(4). Electron scattering measurements are shown to reproduce only qualitatively state-of-the-art lepton-nucleus energy reconstruction models, indicating that improvements to these particle-interaction models are required to ensure the accuracy of future high-precision neutrino oscillation experiments.
Address [Khachatryan, M.; Hauenstein, F.; Weinstein, L. B.] Old Domin Univ, Norfolk, VA USA, Email: adishka@mit.edu
Corporate Author Thesis
Publisher Nature Portfolio Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes WOS:000722366200013 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5073
Permanent link to this record
 

 
Author Wilson, J.N. et al; Algora, A.
Title Angular momentum generation in nuclear fission Type Journal Article
Year 2021 Publication Nature Abbreviated Journal Nature
Volume 590 Issue 7847 Pages 566-570
Keywords
Abstract When a heavy atomic nucleus splits (fission), the resulting fragments are observed to emerge spinning(1); this phenomenon has been a mystery in nuclear physics for over 40 years(2,3). The internal generation of typically six or seven units of angular momentum in each fragment is particularly puzzling for systems that start with zero, or almost zero, spin. There are currently no experimental observations that enable decisive discrimination between the many competing theories for the mechanism that generates the angular momentum(4-12). Nevertheless, the consensus is that excitation of collective vibrational modes generates the intrinsic spin before the nucleus splits (pre-scission). Here we show that there is no significant correlation between the spins of the fragment partners, which leads us to conclude that angular momentum in fission is actually generated after the nucleus splits (post-scission). We present comprehensive data showing that the average spin is strongly mass-dependent, varying in saw-tooth distributions. We observe no notable dependence of fragment spin on the mass or charge of the partner nucleus, confirming the uncorrelated post-scission nature of the spin mechanism. To explain these observations, we propose that the collective motion of nucleons in the ruptured neck of the fissioning system generates two independent torques, analogous to the snapping of an elastic band. A parameterization based on occupation of angular momentum states according to statistical theory describes the full range of experimental data well. This insight into the role of spin in nuclear fission is not only important for the fundamental understanding and theoretical description of fission, but also has consequences for the gamma-ray heating problem in nuclear reactors(13,14), for the study of the structure of neutron-rich isotopes(15,16), and for the synthesis and stability of super-heavy elements(17,18). gamma-ray spectroscopy experiments on the origin of spin in the products of nuclear fission of spin-zero nuclei suggest that the fission fragments acquire their spin after scission, rather than before.
Address [Wilson, J. N.; Thisse, D.; Lebois, M.; Jovancevic, N.; Adsley, P.; Babo, M.; Chakma, R.; Delafosse, C.; Haefner, G.; Hauschild, K.; Ibrahim, F.; Ljungvall, J.; Lopez-Martens, A.; Lozeva, R.; Matea, I; Nemer, J.; Popovitch, Y.; Qi, L.; Tocabens, G.; Verney, D.] Univ Paris Saclay, IJC Lab, CNRS, IN2P3, Orsay, France, Email: jonathan.wilson@ijclab.in2p3.fr
Corporate Author Thesis
Publisher Nature Research Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes WOS:000621583600006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4717
Permanent link to this record
 

 
Author Hinke, C.B. et al; Domingo-Pardo, C.
Title Superallowed Gamow-Teller decay of the doubly magic nucleus Sn-100 Type Journal Article
Year 2012 Publication Nature Abbreviated Journal Nature
Volume 486 Issue 7403 Pages 341-345
Keywords
Abstract The shell structure of atomic nuclei is associated with 'magic numbers' and originates in the nearly independent motion of neutrons and protons in a mean potential generated by all nucleons. During beta(+)-decay, a proton transforms into a neutron in a previously not fully occupied orbital, emitting a positron-neutrino pair with either parallel or antiparallel spins, in a Gamow-Teller or Fermi transition, respectively. The transition probability, or strength, of a Gamow-Teller transition depends sensitively on the underlying shell structure and is usually distributed among many states in the neighbouring nucleus. Here we report measurements of the half-life and decay energy for the decay of Sn-100, the heaviest doubly magic nucleus with equal numbers of protons and neutrons. In the beta-decay of Sn-100, a large fraction of the strength is observable because of the large decay energy. We determine the largest Gamow-Teller strength so far measured in allowed nuclear beta-decay, establishing the 'superallowed' nature of this Gamow-Teller transition. The large strength and the low-energy states in the daughter nucleus, In-100, are well reproduced by modern, large-scale shell model calculations.
Address [Hinke, C. B.; Boehmer, M.; Faestermann, T.; Gernhaeuser, R.; Kruecken, R.; Maier, L.; Steiger, K.; Straub, K.; Nebel, F.; Schwertel, S.] Tech Univ Munich, Phys Dept E12, D-85748 Garching, Germany, Email: thomas.faestermann@ph.tum.de
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes WOS:000305466800032 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1055
Permanent link to this record