toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Escribano, P.; Martin Lozano, V.; Vicente, A. url  doi
openurl 
  Title Scotogenic explanation for the 95 GeV excesses Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 108 Issue 11 Pages 115001 - 13pp  
  Keywords  
  Abstract Several hints of the presence of a new state at about 95 GeV have been observed recently. The CMS and ATLAS Collaborations have reported excesses in the diphoton channel at about this diphoton invariant mass with local statistical significances of 2.9 sigma and 1.7 sigma, respectively. Furthermore, a 2 sigma excess in the bb over bar final state was also observed at LEP, again pointing at a similar mass value. We interpret these intriguing hints of new physics in a variant of the Scotogenic model, an economical scenario that induces Majorana neutrino masses at the loop level and includes a viable dark matter candidate. We show that our model can explain the 95 GeV excesses while respecting the relevant collider, Higgs, and electroweak precision bounds and discuss other phenomenological features of our scenario.  
  Address [Escribano, Pablo; Lozano, Victor Martin; Vicente, Avelino] Univ Valencia, CSIC, Inst Fis Corpuscular, Paterna 46980, Spain, Email: pablo.escribano@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001125382800004 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5879  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Amos, K.R.; Aparisi Pozo, J.A.; Bailey, A.J.; Cabrera Urban, S.; Cantero, J.; Cardillo, F.; Castillo Gimenez, V.; Costa, M.J.; Didenko,, M.; Escobar, C.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gomez Delegido, A.J.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Marti-Garcia, S.; Martinez Agullo, P.; Miralles Lopez, M.; Mitsou, V.A.; Monsonis Romero, L.; Moreno Llacer, M.; Munoz Perez, D.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Rubio Jimenez, A.; Ruiz-Martinez, A.; Sabatini, P.; Salt, J.; Sanchez Sebastian, V.; Sayago Galvan, I.; Senthilkumar, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valls Ferrer, J.A.; Varriale, L.; Villaplana Perez, M.; Vos, M. url  doi
openurl 
  Title Anomaly detection search for new resonances decaying into a Higgs boson and a generic new particle X in hadronic final states using √s=13 TeV pp collisions with the ATLAS detector Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 108 Issue 5 Pages 052009 - 33pp  
  Keywords  
  Abstract A search is presented for a heavy resonance Y decaying into a Standard Model Higgs boson H and a new particle X in a fully hadronic final state. The full Large Hadron Collider run 2 dataset of proton-proton collisions at root s =13 TeV collected by the ATLAS detector from 2015 to 2018 is used and corresponds to an integrated luminosity of 139 fb(-1). The search targets the high Y-mass region, where the H and X have a significant Lorentz boost in the laboratory frame. A novel application of anomaly detection is used to define a general signal region, where events are selected solely because of their incompatibility with a learned background-only model. It is constructed using a jet-level tagger for signal-model-independent selection of the boosted X particle, representing the first application of fully unsupervised machine learning to an ATLAS analysis. Two additional signal regions are implemented to target a benchmark X decay into two quarks, covering topologies where the X is reconstructed as either a single large-radius jet or two small-radius jets. The analysis selects Higgs boson decays into bb, and a dedicated neural-network-based tagger provides sensitivity to the boosted heavy-flavor topology. No significant excess of data over the expected background is observed, and the results are presented as upper limits on the production cross section sigma(pp -> Y -> XH -> qqbb) for signals with m(Y) between 1.5 and 6 TeV and m(X) between 65 and 3000 GeV.  
  Address [Filmer, E. K.; Jackson, P.; Kong, A. X. Y.; Potti, H.; Ruggeri, T. A.; Ting, E. X. L.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001088448300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5797  
Permanent link to this record
 

 
Author Domcke, V.; Garcia-Cely, C.; Lee, S.M.; Rodd, N.L. url  doi
openurl 
  Title Symmetries and selection rules: optimising axion haloscopes for Gravitational Wave searches Type Journal Article
  Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 128 - 51pp  
  Keywords Axions and ALPs; Early Universe Particle Physics  
  Abstract In the presence of electromagnetic fields, both axions and gravitational waves (GWs) induce oscillating magnetic fields: a potentially detectable fingerprint of their presence. We demonstrate that the response is largely dictated by the symmetries of the instruments used to search for it. Focussing on low mass axion haloscopes, we derive selection rules that determine the parametric sensitivity of different detector geometries to axions and GWs, and which further reveal how to optimise the experimental geometry to maximise both signals. The formalism allows us to forecast the optimal sensitivity to GWs in the range of 100 kHz to 100 MHz for instruments such as ABRACADABRA, BASE, ADMX SLIC, SHAFT, WISPLC, and DMRadio.  
  Address [Domcke, Valerie; Lee, Sung Mook; Rodd, Nicholas L.] CERN, Theoret Phys Dept, 1 Esplanade Particules, CH-1211 Geneva 23, Switzerland, Email: valerie.domcke@cern.ch;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001189228700003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6049  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jaimes Elles, S.J.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Rebollo De Miguel, M.; Ruiz Vidal, J.; Sanderswood, I.; Zhuo, J. url  doi
openurl 
  Title Evidence for the decays B0 → (D)over-bar(*)0 φ and updated measurements of the branching fractions of the Bs0 → (D)over-bar(*)0 φ decays Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 123 - 26pp  
  Keywords B Physics; Branching fraction; Hadron-Hadron Scattering; CKM Angle Gamma  
  Abstract Evidence for the decays B-0 -> (D) over bar (0)phi and B-0 -> (D) over bar (*0) phi is reported with a significance of 3.6 sigma and 4.3 sigma, respectively. The analysis employs pp collision data at centre-of-mass energies root s = 7, 8 and 13TeV collected by the LHCb detector and corresponding to an integrated luminosity of 9 fb(-1). The branching fractions are measured to be B(B-0 -> (D) over bar (0)phi) = (7.7 +/- 2.1 +/- 0.7 +/- 0.7) x 10(-7), B(B-0 -> (D) over bar (*0)phi) = (2.2 +/- 05 +/- 0.2 +/- 0.2) x 10(-6). In these results, the first uncertainty is statistical, the second systematic, and the third is related to the branching fraction of the B-0 -> (D) over bar K-0(+) K- decay, used for normalisation. By combining the branching fractions of the decays B-0 -> (D) over bar ((*)0)phi and B-0 -> (D) over bar ((*)0)omega, the omega-phi mixing angle delta is constrained to be tan(2)delta = (3.6 +/- 0.7 +/- 0.4) x 10(-3), where the first uncertainty is statistical and the second systematic. An updated measurement of the branching fractions of the B-s(0) -> (D) over bar ((*)0).phi decays, which can be used to determine the CKM angle gamma, leads to B(B-s(0) -> (D) over bar (0)phi) = (2.30 +/- 0.10 +/- 0.11 +/- 0.20) x 10(-5), B(B-s(0) -> (D) over bar (*0)phi) = (3.17 +/- 0.16 +/- 0.17 +/- 0.27) x 10(-5).  
  Address [Leite, J. Baptista de Souza; Bediaga, I. B.; Torres, M. Cruz; Da Graca, U. De Freitas Carneiro; De Miranda, J. M.; dos Reis, A. C.; Falcao, L. N.; Gomes, A.; Massafferri, A.; Santoro, L.; Machado, D. Torres] CBPF, Rio De Janeiro, Brazil, Email: zhouxk@ccnu.edu.cn  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001093260200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5896  
Permanent link to this record
 

 
Author Gil-Dominguez, F.; Molina, R. url  doi
openurl 
  Title Quark mass dependence of the D*s0 (2317) and D s1 (2460) resonances Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 109 Issue 9 Pages 096002 - 17pp  
  Keywords  
  Abstract We determine the quark mass dependence-light and heavy-of the D*s0(2317) and Ds1(2460) properties, such as, mass, coupling to D(*)K, scattering lengths and compositeness, from a global analysis I = 0 for different boosts and two pion masses. The formalism is based in the local hidden-gauge interaction of Weinberg-Tomozawa type which respects both chiral and heavy quark spin symmetries, supplemented by a term that takes into account the D(*)K coupling to a bare cs<overline> component. The isospin violating decay of the D*s0(2317) -> D+s pi 0 is also evaluated.  
  Address [Gil-Dominguez, F.; Molina, R.] Ctr Mixto Univ Valencia, Dept Fis Teor, CSIC, Parc Cientif UV,C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: fernando.gil@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001224715500005 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 6134  
Permanent link to this record
 

 
Author Xu, Z.Y. et al; Algora, A.; Morales, A.I. url  doi
openurl 
  Title 133In: A Rosetta Stone for Decays of r-Process Nuclei Type Journal Article
  Year 2023 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 131 Issue 2 Pages 022501 - 6pp  
  Keywords  
  Abstract The beta decays from both the ground state and a long-lived isomer of In-133 were studied at the ISOLDE Decay Station (IDS). With a hybrid detection system sensitive to beta,gamma, and neutron spectroscopy, the comparative partial half-lives (log ft) have been measured for all their dominant beta-decay channels for the first time, including a low-energy Gamow-Teller transition and several first-forbidden (FF) transitions. Uniquely for such a heavy neutron-rich nucleus, their beta decays selectively populate only a few isolated neutron unbound states in Sn-133. Precise energy and branching-ratio measurements of those resonances allow us to benchmark beta-decay theories at an unprecedented level in this region of the nuclear chart. The results show good agreement with the newly developed large-scale shell model (LSSM) calculations. The experimental findings establish an archetype for the beta decay of neutron-rich nuclei southeast of Sn-132 and will serve as a guide for future theoretical development aiming to describe accurately the key beta decays in the rapid-neutron capture (r-) process.  
  Address [Xu, Z. Y.; Madurga, M.; Grzywacz, R.; King, T. T.; Halverson, C.; Heideman, J.; Singh, M.; Yokoyama, R.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001145547400003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5921  
Permanent link to this record
 

 
Author Dai, L.R.; Song, J.; Oset, E. url  doi
openurl 
  Title Evolution of genuine states to molecular ones: The Tcc(3875) case Type Journal Article
  Year 2023 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 846 Issue Pages 138200 - 6pp  
  Keywords  
  Abstract We address the issue of the compositeness of hadronic states and demonstrate that starting with a genuine state of nonmolecular nature, but which couples to some meson-meson component to be observable in that channel, if that state is blamed for a bound state appearing below the meson-meson threshold it gets dressed with a meson cloud and it becomes pure molecular in the limit case of zero binding. We discuss the issue of the scales, and see that if the genuine state has a mass very close to threshold, the theorem holds, but the molecular probability goes to unity in a very narrow range of energies close to threshold. The conclusion is that the value of the binding does not determine the compositeness of a state. However, in such extreme cases we see that the scattering length gets progressively smaller and the effective range grows indefinitely. In other words, the binding energy does not determine the compositeness of a state, but the additional information of the scattering length and effective range can provide an answer. We also show that the consideration of a direct attractive interaction between the mesons in addition to having a genuine component, increases the compositeness of the state. Explicit calculations are done for the Tcc(3875) state, but are easily generalized to any hadronic system.  
  Address [Dai, L. R.] Huzhou Univ, Sch Sci, Huzhou 313000, Zhejiang, Peoples R China, Email: dailianrong@zjhu.edu.cn;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001088653400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5760  
Permanent link to this record
 

 
Author Blennow, M.; Fernandez-Martinez, E.; Hernandez-Garcia, J.; Lopez-Pavon, J.; Marcano, X.; Naredo-Tuero, D. url  doi
openurl 
  Title Bounds on lepton non-unitarity and heavy neutrino mixing Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 030 - 41pp  
  Keywords Electroweak Precision Physics; Neutrino Mixing; Sterile or Heavy Neutrinos  
  Abstract We present an updated and improved global fit analysis of current flavour and electroweak precision observables to derive bounds on unitarity deviations of the leptonic mixing matrix and on the mixing of heavy neutrinos with the active flavours. This new analysis is motivated by new and updated experimental results on key observables such as V-ud, the invisible decay width of the Z boson and the W boson mass. It also improves upon previous studies by considering the full correlations among the different observables and explicitly calibrating the test statistic, which may present significant deviations from a & chi;(2) distribution. The results are provided for three different Type-I seesaw scenarios: the minimal scenario with only two additional right-handed neutrinos, the next to minimal one with three extra neutrinos, and the most general one with an arbitrary number of heavy neutrinos that we parametrise via a generic deviation from a unitary leptonic mixing matrix. Additionally, we also analyze the case of generic deviations from unitarity of the leptonic mixing matrix, not necessarily induced by the presence of additional neutrinos. This last case relaxes some correlations among the parameters and is able to provide a better fit to the data. Nevertheless, inducing only leptonic unitarity deviations avoiding both the correlations implied by the right-handed neutrino extension as well as more strongly constrained operators is challenging and would imply significantly more complex UV completions.  
  Address [Blennow, Mattias] KTH Royal Inst Technol, AlbaNova Univ Ctr, Sch Engn Sci, Dept Phys, Roslagstullsbacken 21, S-10691 Stockholm, Sweden, Email: emb@kth.se;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001044930400003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5607  
Permanent link to this record
 

 
Author Gil-Dominguez, F.; Alarcon, J.M.; Weiss, C. url  doi
openurl 
  Title Proton charge radius extraction from muon scattering at MUSE using dispersively improved chiral effective field theory Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 108 Issue 7 Pages 074026 - 14pp  
  Keywords  
  Abstract The MUSE experiment at Paul Scherrer Institute will perform the first measurement of low-energy muon-proton elastic scattering (muon lab momenta 115-210 MeV) with the aim of determining the proton charge radius. We study the prospects for the proton radius extraction using the theoretical framework of dispersively improved chiral effective field theory (DI.EFT). It connects the proton radii with the finite-Q(2) behavior of the form factors through complex analyticity and enables the use of data up to Q(2) similar to 0.1 GeV2 for radius extraction. We quantify the sensitivity of the μp cross section to the proton charge radius, the theoretical uncertainty of the cross section predictions, and the size of two-photon exchange corrections. We find that the optimal kinematics for radius extraction at MUSE is at momenta 210 MeV and Q(2) similar to 0.05-0.08 GeV2. We compare the performance of electron and muon scattering in the same kinematics. As a by-product, we obtain explicit predictions for the μp and ep cross sections at MUSE as functions of the assumed value of the proton radius.  
  Address [Gil-Dominguez, F.] Inst Fis Corpuscular IFIC, Ctr Mixto CSIC UV, Inst Invest Paterna, C Catedrat Jose Beltran 2, Valencia, Spain, Email: fernando.gil@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001193674200003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6024  
Permanent link to this record
 

 
Author Bernabeu, J.; Sabulsky, D.O.; Sanchez, F.; Segarra, A. url  doi
openurl 
  Title Neutrino mass and nature through its mediation in atomic clock interference Type Journal Article
  Year 2024 Publication AVS Quantum Science Abbreviated Journal AVS Quantum Sci.  
  Volume 6 Issue 1 Pages 014410 - 8pp  
  Keywords  
  Abstract The absolute mass of neutrinos and their nature are presently unknown. Aggregate matter has a coherent weak charge leading to a repulsive interaction mediated by a neutrino pair. The virtual neutrinos are non-relativistic at micron distances, giving a distinct behavior for Dirac versus Majorana mass terms. This effective potential allows for the disentanglement of the Dirac or Majorana nature of the neutrino via magnitude and distance dependence. We propose an experiment to search for this potential based on the concept that the density-dependent interaction of an atomic probe with a material source in one arm of an atomic clock interferometer generates a differential phase. The appropriate geometry of the device is selected using the saturation of the weak potential as a guide. The proposed experiment has the added benefit of being sensitive to gravity at micron distances. A strategy to suppress the competing Casimir-Polder interaction, depending on the electronic structure of the material source, as well as a way to compensate the gravitational interaction in the two arms of the interferometer is discussed.  
  Address [Bernabeu, Jose; Segarra, Alejandro] Univ Valencia, Dept Theoret Phys, E-46100 Valencia, Spain, Email: jose.bernabeu@uv.es  
  Corporate Author Thesis  
  Publisher AIP Publishing Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001186930100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6118  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva