Houarner, C., Boujrad, A., Tripon, M., Bezard, M., Blaizot, M., Bourgault, P., et al. (2025). NUMEXO2: a versatile digitizer for nuclear physics. J. Instrum., 20(5), T05004–21pp.
Abstract: NUMEXO2 is a 16 channels 14 bit/200 MHz digitizer and processing board initially developed for gamma-ray spectroscopy (for EXOGAM: EXOtic nuclei GAMma ray). NUMEXO2 has been gradually extended and improved as a general purpose digitizer to fulfill various needs in nuclear physics detection at GANIL. This was possible thanks to reprogrammable components like FPGAs and the optimization of different algorithms. The originality of this work compared to similar systems is that all numerical operations follow the digital data flow from ADCs, without any storage step of samples. Some details are given on digital processing of the signals, delivered by a large variety of detectors: HPGe, silicon strip detector, ionisation chamber, liquid and plastic scintillators read-out with photomultipliers, Multi Wire Proportional Counter and drift chamber. Thanks to this high versatility, the NUMEXO2 digitizer is extensively used at GANIL (Grand Acc & eacute;l & eacute;rateur National d'Ions Lourds). Some of the performances of the module are also reported.
|
Albaladejo, M., Canoa, A., Nieves, J., Pelaez, J. R., Ruiz Arriola, E., & Ruiz de Elvira, J. (2025). The role of chiral symmetry and the non-ordinary κ/K*0(700) nature in π±KS femtoscopic correlations. Phys. Lett. B, 866, 139552–5pp.
Abstract: We show that the use of realistic pi K interactions, obtained from a dispersive analysis of scattering data, as well as relativistic corrections, are essential to describe recently observed pi +/- KS femtoscopic correlations. We demonstrate that the spontaneous chiral symmetry breaking dynamics and the non-ordinary features of the kappa/K0*(700)resonance, together with large cancellations between isospin channels, produce a large suppression of pi +/- KS femtoscopic correlations compared to widely used models. Within an improved version of the standard on-shell factorization formalism, we illustrate that compensating for this interaction suppression leads to source radii smaller than 1 fm, contrary to usual expectations, as well as larger correlation strengths. The relation between these two parameters cannot be accommodated within naive models describing the nature of the resonances. This may raise concerns about the applicability of popular but too simple approaches for systems with light mesons. However, the correlation-suppression effects we demonstrate here will be relevant in any formalism, and substantial corrections may be expected for other femtoscopic systems involving light mesons.
|
Kalliokoski, M., Levi, G., Maulik, A., Ostrovskiy, I., Patrizii, L., Pinfold, J., et al. (2025). Calibration of Solid State Nuclear Track Detectors for rare event searches. J. Instrum., 20(3), P03014–12pp.
Abstract: The calibration of the CR39 (R) and Makrofol (R) Nuclear Track Detectors of the MoEDAL experiment at the CERN-LHC was performed by exposing stacks of detector foils to heavy ion beams with energies ranging from 340 MeV/nucleon to 150 GeV/nucleon. After chemical etching, the base areas and lengths of etch-pit cones were measured using automatic and manual optical microscopes. The response of the detectors as measured by the ratio of the track-etching rate over the bulk-etching rate, was determined over a range extending from their threshold at Z/beta 7 and 50 for CR39 and Makrofol, respectively, up to Z/beta 92.
|
Zhang, X. Y., Shi, P. P., & Guo, F. K. (2025). Production of 1-+ exotic charmonium-like states in electron-positron collisions. Phys. Lett. B, 867, 139603–8pp.
Abstract: The absence of observed charmonium-like states with the exotic quantum numbers J=1+ has prompted us to investigate the production rates of the 1 DD, (2420) and D D, (2420) hadronic molecules, which we refer to as n and, respectively, in electron-positron collisions. Assuming a hadronic molecular nature for the vector charmonium-like states (4360) and yr(4415), we evaluate the radiative decay widths of (4360)-> 77 and (4415) yn. Using these decay widths, we estimate the cross sections for producing, and, in electron-positron annihilations, as well as the event numbers at the planned Super r-Charm Facility. Our results suggest that the ideal energy region for observing these states is around 4.44 and 4.50 GeV, just above the D D (2420) and D D (2460) thresholds, respectively.
|
Salami, R. et al, Lacasta, C., Lopez, H., Platero, V., Solaz, C., & Soldevila, U. (2025). Quality concerns caused by quality control – deformation of silicon strip detector modules in thermal cycling tests. J. Instrum., 20(3), P03004–17pp.
Abstract: The ATLAS experiment at the Large Hadron Collider (LHC) is currently preparing to replace its present Inner Detector (ID) with the upgraded, all-silicon Inner Tracker (ITk) for its High-Luminosity upgrade (HL-LHC). The ITk will consist of a central pixel tracker and the outer strip tracker, consisting of about 19,000 strip detector modules. Each strip module is assembled from up to two sensors, and up to five flexes (depending on its geometry) in a series of gluing, wirebonding and quality control steps. During detector operation, modules will be cooled down to temperatures of about -35 degrees C (corresponding to the temperature of the support structures on which they will be mounted) after being initially assembled and stored at room temperature. In order to ensure compatibility with the detector's operating temperature range, modules are subjected to thermal cycling as part of their quality control process. Ten cycles between -35 degrees C and +40 degrees C are performed for each module, with full electrical characterisation tests at each high and low temperature point. As part of an investigation into the stress experienced by modules during cooling, it was observed that modules generally showed a change in module shape before and after thermal cycling. This paper presents a summary of the discovery and understanding of the observed changes, connecting them with excess module stress, as well as the resulting modifications to the module thermal cycling procedure.
|
ter Hoeve, J., Mantani, L., Rojo, J., Rossia, A. N., & Vryonidou, E. (2025). Connecting scales: RGE effects in the SMEFT at the LHC and future colliders. J. High Energy Phys., 06(6), 125–48pp.
Abstract: Global interpretations of particle physics data within the framework of the Standard Model Effective Field Theory (SMEFT), including their matching to UV-complete models, involve energy scales potentially spanning several orders of magnitude. Relating these measurements among them in terms of a common energy scale is enabled by the Renormalisation Group Equations (RGEs). Here we present a systematic assessment of the impact of RGEs, accounting for QCD, electroweak, and Yukawa corrections, in a global SMEFT fit of LEP and LHC data where individual cross-sections are assigned a characteristic energy scale. We also quantify the impact of the RGE effects in projected global fits at the HL-LHC and the FCC-ee. Finally, we assess the role that RGEs play on the sensitivity at HL-LHC and FCC-ee to representative one-particle UV models matched onto SMEFT either at tree and one-loop level. Our study emphasizes the importance of a consistent treatment of energy scales to achieve the best precision and accuracy in indirect searches for heavy new physics through precision measurements.
|
Song, J., Liang, W. H., & Oset, E. (2025). Determination of the K+K0 scattering length and effective range from the D+→K0π+η reaction. Eur. Phys. J. C, 85(5), 513–9pp.
Abstract: We study the scattering parameters of the K+K0 system through the analysis of the D+-> K0 pi+eta reaction, aiming at determining the scattering length a and effective range r0 of the K+K0 interaction. These parameters are extracted by analyzing and fitting the mass distributions of the pairs in the final K0 pi+eta state. To ensure the reliability of the results, we apply resampling techniques to evaluate statistical uncertainties and improve the precision of the scattering parameters. The obtained results are compared with previous theoretical predictions and experimental data, providing new insights into the K+K0 interaction at low energies.
|
Blennow, M., Coloma, P., Fernandez-Martinez, E., Hernandez-Garcia, J., Lopez-Pavon, J., Marcano, X., et al. (2025). Misconceptions in neutrino oscillations in presence of non-unitary mixing. Nucl. Phys. B, 1017, 116944–15pp.
Abstract: Deviations from unitarity of the CKM matrix in the quark sector are considered excellent windows to probe physics beyond the Standard Model. In its leptonic counterpart, the PMNS matrix, these searches are particularly motivated, as the new physics needed to generate neutrino masses often leads to non-unitary mixing among the standard neutrinos. It is then interesting to consider how neutrino oscillations are affected in such scenario. This simple question is, however, subject to several subtleties: What is the correct way to define oscillation probabilities for a non-unitary mixing matrix? Do these probabilities add up to one? Does a non-unitary mixing matrix lead to observable flavor transitions at zero distance? What is the interplay between unitarity constraints obtained from neutrino oscillations and from electroweak precision data? This work aims to shed light on these issues and to clarify the corresponding misconceptions commonly found in the literature. We also compile updated bounds from neutrino oscillation searches to compare with those from flavour and electroweak precision observables.
|
Maluf, R. V., Silva, J. E. G., Almeida, C. A. S., & Olmo, G. J. (2025). Perturbative solutions for compact objects in (2+1)-dimensional Bopp-Podolsky electrodynamics. Eur. Phys. J. C, 85(5), 594–8pp.
Abstract: We investigate the space-time geometry generated by compact objects in (2+1)-dimensional Bopp-Podolsky electrodynamics. Inspired by previous studies where the Bopp-Podolsky field acts as a source for spherically symmetric solutions, we revisit this question within the lower-dimensional (2+1) framework. Using a perturbative approach, we derive a charged BTZ-like black hole solution and compute corrections up to second order in a perturbative expansion valid far from the horizon. Our analysis suggests that the near-horizon and inner structure of the solution remain unaltered, indicating that no new non-black hole objects emerge in this regime. In particular, we do not find evidence of wormhole solutions in the (2+1)-dimensional version of this theory.
|
Lei, B. F., Zhang, H., Bontoiu, C., Bonatto, A., Martin-Luna, P., Liu, B., et al. (2025). Leaky surface plasmon-based wakefield acceleration in nanostructured carbon nanotubes. Plasma Phys. Control. Fusion, 67(6), 065036–11pp.
Abstract: Metallic carbon nanotubes (CNTs) can provide ultra-dense, homogeneous plasma capable of sustaining resonant plasma waves-known as plasmons-with ultra-high field amplitudes. These waves can be efficiently driven by either high-intensity laser pulses or high-density relativistic charged particle beams. In this study, we use numerical simulations to propose that electrons and positrons can be accelerated in wakefields generated by the leaky electromagnetic field of surface plasmons. These plasmons are excited when a high-intensity optical laser pulse propagates paraxially through a cylindrical vacuum channel structured within a CNT forest. The wakefield is stably sustained by a non-evanescent longitudinal field with TV m-1-level amplitudes. This mechanism differs significantly from the plasma wakefield generation in uniform gaseous plasmas. Travelling at the speed of light in a vacuum, with phase-matched focusing fields, the wakefield acceleration is highly efficient for both electron and positron beams. We also examine two potential electron injection mechanisms: edge injection and self-injection. Both mechanisms are feasible with current laser facilities, paving the way for experimental realisation. Beyond presenting a novel method toward ultra-compact, high-energy solid-state plasma particle accelerators with ultra-high acceleration gradients, this work also expands the potential of high-energy plasmonics.
|