|   | 
Details
   web
Records
Author Pastore, A.; Davesne, D.; Navarro, J.
Title Linear response of homogeneous nuclear matter with energy density functionals Type Journal Article
Year 2015 Publication Physics Reports Abbreviated Journal Phys. Rep.
Volume 563 Issue Pages 1-67
Keywords Skyrme functional; Linear response theory; Landau parameters
Abstract Response functions of infinite nuclear matter with arbitrary isospin asymmetry are studied in the framework of the random phase approximation. The residual interaction is derived from a general nuclear Skyrme energy density functional. Besides the usual central, spin-orbit and tensor terms it could also include other components as new density-dependent terms or three-body terms. Algebraic expressions for the response functions are obtained from the Bethe-Salpeter equation for the particle-hole propagator. Applications to symmetric nuclear matter, pure neutron matter and asymmetric nuclear matter are presented and discussed. Spin-isospin strength functions are analyzed for varying conditions of density, momentum transfer, isospin asymmetry, and temperature for some representative Skyrme functionals. Particular attention is paid to the discussion of instabilities, either real or unphysical, which could manifest in finite nuclei.
Address [Pastore, A.] Univ Libre Bruxelles, Inst Astron & Astrophys, B-1050 Brussels, Belgium, Email: davesne@ipnl.in2p3.fr
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-1573 ISBN Medium
Area Expedition Conference
Notes WOS:000350515400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2143
Permanent link to this record
 

 
Author Davesne, D.; Meyer, J.; Pastore, A.; Navarro, J.
Title Partial wave decomposition of the N3LO equation of state Type Journal Article
Year 2015 Publication Physica Scripta Abbreviated Journal Phys. Scr.
Volume 90 Issue 11 Pages 114002 - 6pp
Keywords nuclear structure; equation of state; effective theory
Abstract By means of a partial wave decomposition, we separate their contributions to the equation of state (EoS) of symmetric nuclear matter for the N3LO pseudo-potential. In particular, we show that although both the tensor and the spin-orbit terms do not contribute to the EoS, they give a non-vanishing contribution to the separate (JLS) channels.
Address [Davesne, D.; Meyer, J.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon,UMR 5822, F-69622 Villeurbanne, France, Email: davesne@ipnl.in2p3.fr;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-8949 ISBN Medium
Area Expedition Conference
Notes WOS:000366871100003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2508
Permanent link to this record
 

 
Author Davesne, D.; Holt, J.W.; Pastore, A.; Navarro, J.
Title Effect of three-body forces on response functions in infinite neutron matter Type Journal Article
Year 2015 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 91 Issue 1 Pages 014323 - 7pp
Keywords
Abstract We study the impact of three-body forces on the response functions of cold neutron matter. These response functions are determined in the random phase approximation from a residual interaction expressed in terms of Landau parameters. Special attention is paid to the noncentral part, including all terms allowed by the relevant symmetries. Using Landau parameters derived from realistic nuclear two-and three-body forces grounded in chiral effective field theory, we find that the three-body term has a strong impact on the excited states of the system and in the static and long-wavelength limit of the response functions for which a new exact formula is established.
Address [Davesne, D.] Univ Lyon, F-69003 Lyon, France, Email: davesne@ipnl.in2p3.fr
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0556-2813 ISBN Medium
Area Expedition Conference
Notes WOS:000349353100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2111
Permanent link to this record
 

 
Author Pastore, A.; Martini, M.; Davesne, D.; Navarro, J.; Goriely, S.; Chamel, N.
Title Linear response theory and neutrino mean free path using Brussels-Montreal Skyrme functionals Type Journal Article
Year 2014 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 90 Issue 2 Pages 025804 - 11pp
Keywords
Abstract The Brussels-Montreal Skyrme functionals have been successful in describing properties of both finite nuclei and infinite homogeneous nuclear matter. In their latest version, these functionals have been equipped with two extra density-dependent terms in order to reproduce simultaneously ground state properties of nuclei and infinite nuclear matter properties while avoiding at the same time the arising of ferromagnetic instabilities. In the present article, we extend our previous results of the linear response theory to include such extra terms at both zero and finite temperature in pure neutron matter. The resulting formalism is then applied to derive the neutrino mean free path. The predictions from the Brussels-Montreal Skyrme functionals are compared with ab initio methods.
Address [Pastore, A.; Martini, M.; Goriely, S.; Chamel, N.] Univ Libre Brussels, Inst Astron & Astrophys, B-1050 Brussels, Belgium
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0556-2813 ISBN Medium
Area Expedition Conference
Notes WOS:000341027800009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1901
Permanent link to this record
 

 
Author Becker, P.; Davesne, D.; Meyer, J.; Pastore, A.; Navarro, J.
Title Tools for incorporating a D-wave contribution in Skyrme energy density functionals Type Journal Article
Year 2015 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 42 Issue 3 Pages 034001 - 19pp
Keywords energy density functional; D-wave; Skyrme pseudo-potential; linear response theory
Abstract The possibility of adding a D-wave term to the standard Skyrme effective interaction has been widely considered in the past. Such a term has been shown to appear in the next-to-next-to-leading order of the Skyrme pseudo-potential. The aim of the present article is to provide the necessary tools to incorporate this term in a fitting procedure: first, a mean-field equation written in spherical symmetry in order to describe spherical nuclei and second, the response function to detect unphysical instabilities. With these tools it will be possible to build a new fitting procedure to determine the coupling constants of the new functional.
Address [Becker, P.; Davesne, D.; Meyer, J.] Univ Lyon, F-69622 Lyon, France, Email: apastore@ulb.ac.be
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000353300200002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2202
Permanent link to this record
 

 
Author Davesne, D.; Pastore, A.; Navarro, J.
Title Linear response theory in asymmetric nuclear matter for Skyrme functionals including spin-orbit and tensor terms Type Journal Article
Year 2014 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 89 Issue 4 Pages 044302 - 14pp
Keywords
Abstract The formalism of linear response theory for a Skyrme functional including spin-orbit and tensor terms is generalized to the case of infinite nuclear matter with arbitrary isospin asymmetry. Response functions are obtained by solving an algebraic system of equations, which is explicitly given. Spin-isospin strength functions are analyzed varying the conditions of density, momentum transfer, asymmetry, and temperature. The presence of instabilities, including the spinodal one, is studied by means of the static susceptibility.
Address [Davesne, D.] Univ Lyon, F-69003 Lyon, France, Email: davesne@ipnl.in2p3.fr
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0556-2813 ISBN Medium
Area Expedition Conference
Notes WOS:000334296000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1758
Permanent link to this record
 

 
Author Davesne, D.; Pastore, A.; Navarro, J.
Title Fitting (NLO)-L-3 pseudo-potentials through central plus tensor Landau parameters Type Journal Article
Year 2014 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 41 Issue 6 Pages 065104 - 12pp
Keywords Landau parameters; (NLO)-L-3; phenomenological interactions; fitting methods
Abstract Landau parameters determined from phenomenological finite-range interactions are used to get an estimation of next-to-next-to-next-to-leading order ((NLO)-L-3) pseudo-potentials parameters. The parameter sets obtained in this way are shown to lead to consistent results concerning saturation properties. The uniqueness of this procedure is discussed, and an estimate of the error induced by the truncation at (NLO)-L-3 is given.
Address [Davesne, D.] Univ Lyon, F-69622 Lyon, France, Email: davesne@inpl.in2p3.fr
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000338425100009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1838
Permanent link to this record
 

 
Author Pastore, A.; Davesne, D.; Navarro, J.
Title Nuclear matter response function with a central plus tensor Landau interaction Type Journal Article
Year 2014 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 41 Issue 5 Pages 055103 - 17pp
Keywords Landau; random phase approximation; phenomenological interactions; tensor
Abstract We present a method to obtain response functions in the random phase approximation (RPA) based on a residual interaction described in terms of Landau parameters with central plus tensor contributions. The response functions keep the explicit momentum dependence of the RPA, in contrast with the traditional Landau approximation. Results for symmetric nuclear matter and pure neutron matter are presented using Landau parameters derived from finite-range interactions, both phenomenological and microscopic. We study the convergence of response functions as the number of Landau parameters is increased.
Address [Pastore, A.; Navarro, J.] Univ Libre Brussels, Inst Astron & Astrophys, B-1050 Brussels, Belgium, Email: apastore@ulb.ac.be
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000334662500015 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1750
Permanent link to this record
 

 
Author Davesne, D.; Pastore, A.; Navarro, J.
Title Skyrme effective pseudopotential up to the next-to-next-to-leading order Type Journal Article
Year 2013 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 40 Issue 9 Pages 095104 - 8pp
Keywords
Abstract The explicit form of the next-to-next-to-leading order ((NLO)-L-2) of the Skyrme effective pseudopotential compatible with all required symmetries and especially with gauge invariance is presented in a Cartesian basis. It is shown in particular that for such a pseudopotential there is no spin-orbit contribution and that the D-wave term suggested in the original Skyrme formulation does not satisfy the invariance properties. The six new (NLO)-L-2 terms contribute to both the equation of state and the Landau parameters. These contributions to symmetric nuclear matter are given explicitly and discussed.
Address [Davesne, D.] Univ Lyon, F-69622 Lyon, France, Email: davesne@ipnl.in2p3.fr
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000323135200010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1558
Permanent link to this record
 

 
Author Davesne, D.; Pastore, A.; Navarro, J.
Title Hartree-Fock Calculations in Semi-Infinite Matter with Gogny Interactions Type Journal Article
Year 2023 Publication Universe Abbreviated Journal Universe
Volume 9 Issue 9 Pages 398 - 11pp
Keywords Nuclear Density Functional Theory; semi-infinite nuclear matter; Hartree-Fock equations; 21.60.Jz; 21.65.-f; 21.65.Mn
Abstract Hartree-Fock equations in semi-infinite nuclear matter for finite range Gogny interactions are presented together with a detailed numerical scheme to solve them. The value of the surface energy is then extracted and given for standard Gogny interactions.
Address [Davesne, Dany] Univ Lyon 1, Inst Phys Infinis Lyon 2, CNRS, IN2P3, 43 Bd 11 Novembre 1918, F-69622 Villeurbanne, France, Email: davesne@ipnl.in2p3.fr;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:001074530100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5693
Permanent link to this record