|   | 
Details
   web
Records
Author CALICE Collaboration (Lai, S. et al); Irles, A.
Title Software compensation for highly granular calorimeters using machine learning Type Journal Article
Year 2024 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 19 Issue 4 Pages P04037 - 28pp
Keywords Large detector-systems performance; Pattern recognition; cluster finding; calibration and fitting methods; Performance of High Energy Physics Detectors
Abstract A neural network for software compensation was developed for the highly granular CALICE Analogue Hadronic Calorimeter (AHCAL). The neural network uses spatial and temporal event information from the AHCAL and energy information, which is expected to improve sensitivity to shower development and the neutron fraction of the hadron shower. The neural network method produced a depth-dependent energy weighting and a time-dependent threshold for enhancing energy deposits consistent with the timescale of evaporation neutrons. Additionally, it was observed to learn an energy-weighting indicative of longitudinal leakage correction. In addition, the method produced a linear detector response and outperformed a published control method regarding resolution for every particle energy studied.
Address [Lai, S.; Utehs, J.; Wilhahn, A.] Georg August Univ Gottingen, Phys Inst 2, Friedrich Hund Pl 1, D-37077 Gottingen, Germany, Email: jack.rolph@desy.de
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:001230094600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6128
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jaimes Elles, S.J.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Rebollo De Miguel, M.; Sanderswood, I.; Zhuo, J.
Title Momentum scale calibration of the LHCb spectrometer Type Journal Article
Year 2024 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 19 Issue 2 Pages P02008 - 21pp
Keywords Particle tracking detectors; Analysis and statistical methods
Abstract For accurate determination of particle masses accurate knowledge of the momentum scale of the detectors is crucial. The procedure used to calibrate the momentum scale of the LHCb spectrometer is described and illustrated using the performance obtained with an integrated luminosity of 1.6 fb-1 collected during 2016 in pp running. The procedure uses large samples of J/qi -> mu+mu- and B+ -> J/qiK+ decays and leads to a relative accuracy of 3 x 10-4 on the momentum scale.
Address [Egede, U.; Fujii, Y.; Hadavizadeh, T.; Henderson, R. D. L.; Lane, J. J.; Monk, M.; Song, R.; Walton, E. J.; Ward, J. A.] Monash Univ, Sch Phys & Astron, Melbourne, Vic, Australia, Email: seophine.stanislaus@cern.ch
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:001185791500004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6070
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jaimes Elles, S.J.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Rebollo De Miguel, M.; Sanderswood, I.; Zhuo, J.
Title Curvature-bias corrections using a pseudomass method Type Journal Article
Year 2024 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 19 Issue 3 Pages P03010 - 22pp
Keywords Analysis and statistical methods; Detector alignment and calibration methods (lasers, sources, particle-beams); Large detector-systems performance; Performance of High Energy Physics Detectors
Abstract Momentum measurements for very high momentum charged particles, such as muons from electroweak vector boson decays, are particularly susceptible to charge-dependent curvature biases that arise from misalignments of tracking detectors. Low momentum charged particles used in alignment procedures have limited sensitivity to coherent displacements of such detectors, and therefore are unable to fully constrain these misalignments to the precision necessary for studies of electroweak physics. Additional approaches are therefore required to understand and correct for these effects. In this paper the curvature biases present at the LHCb detector are studied using the pseudomass method in proton-proton collision data recorded at centre of mass energy root s = 13 TeV during 2016, 2017 and 2018. The biases are determined using Z -> mu(+)mu(-) decays in intervals defined by the data-taking period, magnet polarity and muon direction. Correcting for these biases, which are typically at the 10(-4) GeV-1 level, improves the Z -> mu(+)mu(-) mass resolution by roughly 18% and eliminates several pathological trends in the kinematic-dependence of the mean dimuon invariant mass.
Address [Egede, U.; Fujii, Y.; Hadavizadeh, T.; Henderson, R. D. L.; Lane, J. J.; Monk, M.; Song, R.; Walton, E. J.; Ward, J. A.] Monash Univ, Sch Phys & Astron, Melbourne, Vic, Australia, Email: seophine.stanislaus@cern.ch
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:001190907900003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6057
Permanent link to this record
 

 
Author NEXT Collaboration (Mistry, K. et al); Carcel, S.; Lopez-March, N.; Martin-Albo, J.; Novella, P.; Querol, M.; Romo-Luque, C.; Sorel, M.; Soto-Oton, J.; Uson, A.
Title Design, characterization and installation of the NEXT-100 cathode and electroluminescence regions Type Journal Article
Year 2024 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 19 Issue 2 Pages P02007 - 36pp
Keywords Detector design and construction technologies and materials; Double-beta decay detectors; Charge transport; multiplication and electroluminescence in rare gases and liquids; Time projection Chambers (TPC)
Abstract NEXT -100 is currently being constructed at the Laboratorio Subterraneo de Canfranc in the Spanish Pyrenees and will search for neutrinoless double beta decay using a high-pressure gaseous time projection chamber (TPC) with 100 kg of xenon. Charge amplification is carried out via electroluminescence (EL) which is the process of accelerating electrons in a high electric field region causing secondary scintillation of the medium proportional to the initial charge. The NEXT -100 EL and cathode regions are made from tensioned hexagonal meshes of 1 m diameter. This paper describes the design, characterization, and installation of these parts for NEXT -100. Simulations of the electric field are performed to model the drift and amplification of ionization electrons produced in the detector under various EL region alignments and rotations. Measurements of the electrostatic breakdown voltage in air characterize performance under high voltage conditions and identify breakdown points. The electrostatic deflection of the mesh is quantified and fit to a first -pr inciples mechanical model. Measurements were performed with both a standalone test EL region and with the NEXT-100 EL region before its installation in the detector. Finally, we describe the parts as installed in NEXT-100, following their deployment in Summer 2023.
Address [Mistry, K.; Jones, B. J. P.; Munson, B.; Norman, L.; Oliver, D.; Pingulkar, S.; Rodriguez-Tiscareno, M.; Silva, K.; Stogsdill, K.; Byrnes, N.; Dey, E.; Navarro, K. E.; Nygren, D. R.; Parmaksiz, I.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA, Email: next-src@pegaso.ific.uv.es
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:001185791500003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6071
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jaimes Elles, S.J.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Rebollo De Miguel, M.; Sanderswood, I.; Zhuo, J.
Title Helium identification with LHCb Type Journal Article
Year 2024 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 19 Issue 2 Pages P02010 - 23pp
Keywords dE/dx detectors; Ion identification systems; Large detector systems for particle and astroparticle physics; Particle identification methods
Abstract The identification of helium nuclei at LHCb is achieved using a method based on measurements of ionisation losses in the silicon sensors and timing measurements in the Outer Tracker drift tubes. The background from photon conversions is reduced using the RICH detectors and an isolation requirement. The method is developed using pp collision data at root s = 13 TeV recorded by the LHCb experiment in the years 2016 to 2018, corresponding to an integrated luminosity of 5.5 fb(-1). A total of around 10(5) helium and antihelium candidates are identified with negligible background contamination. The helium identification efficiency is estimated to be approximately 50% with a corresponding background rejection rate of up to O(10(12)). These results demonstrate the feasibility of a rich programme of measurements of QCD and astrophysics interest involving light nuclei.
Address [Egede, U.; Fujii, Y.; Hadavizadeh, T.; Henderson, R. D. L.; Lane, J. J.; Monk, M.; Song, R.; Walton, E. J.; Ward, J. A.] Monash Univ, Sch Phys & Astron, Melbourne, Vic, Australia, Email: rmoise@cern.ch
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:001185791500006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6068
Permanent link to this record