|   | 
Details
   web
Records
Author Martin-Luna, P.; Gimeno, B.; Gonzalez-Iglesias, D.; Esperante, D.; Blanch, C.; Fuster-Martinez, N.; Martinez-Reviriego, P.; Fuster, J.
Title On the Magnetic Field of a Finite Solenoid Type Journal Article
Year 2023 Publication IEEE Transactions on Magnetics Abbreviated Journal IEEE Trans. Magn.
Volume 59 Issue 4 Pages 7000106 - 6pp
Keywords Solenoids; Magnetic fields; Integral equations; Magnetostatics; Magnetostatic waves; Particle beams; NASA; Elliptic integrals; finite solenoid; magnetostatics
Abstract The magnetostatic field of a finite solenoid with infinitely thin walls carrying a dc current oriented in the azimuthal direction is calculated everywhere in space in terms of complete elliptic integrals by direct integration of the Biot-Savart law. The solution is particularized near the solenoid axis and in the midplane perpendicular to the axis obtaining expressions that agree with some typical approximations that are made in introductory courses of electromagnetism or in the technical literature. The range of validity of these approximations has been studied comparing them with the obtained general expression.
Address [Martin-Luna, P.; Gimeno, B.; Gonzalez-Iglesias, D.; Esperante, D.; Blanch, C.; Fuster-Martinez, N.; Martinez-Reviriego, P.; Fuster, J.] Univ Valencia, Inst Corpuscular Phys IFIC, CSIC, Paterna 46980, Spain, Email: Pablo.Martin@uv.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9464 ISBN Medium
Area Expedition Conference
Notes WOS:001006992700005 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5552
Permanent link to this record
 

 
Author Gonzalez-Iglesias, D.; Esperante, D.; Gimeno, B.; Blanch, C.; Fuster-Martinez, N.; Martinez-Reviriego, P.; Martin-Luna, P.; Fuster, J.; Alesini, D.
Title Analysis of the Multipactor Effect in an RF Electron Gun Photoinjector Type Journal Article
Year 2023 Publication IEEE Transactions on Electron Devices Abbreviated Journal IEEE Trans. Electron Devices
Volume 70 Issue 1 Pages 288-295
Keywords Magnetic tunneling; Multipactor effect; photoinjector; RF breakdown; RF gun
Abstract The objective of this work is the evaluation of the risk of suffering a multipactor discharge within an RF electron gun photoinjector. Photoinjectors are a type of source for intense electron beams, which are the main electron source for synchrotron light sources, such as free-electron lasers. The analyzed device consists of 1.6 cells and it has been designed to operate at the S-band. Besides, around the RF gun there is an emittance compensation solenoid, whose magnetic field prevents the growth of the electron beam emittance, and thus the degradation of the properties of the beam. The multipactor analysis is based on a set of numerical simulations by tracking the trajectories of the electron cloud in the cells of the device. To reach this aim, an in-house multipactor code was developed. Specifically, two different cases were explored: with the emittance compensation solenoid assumed to be off and with the emittance compensation solenoid in operation. For both the cases, multipactor simulations were carried out exploring different RF electric field amplitudes. Moreover, for a better understanding of the multipactor phenomenon, the resonant trajectories of the electrons and the growth rate of the electrons population are investigated.
Address [Gonzalez-Iglesias, D.; Esperante, D.; Gimeno, B.; Blanch, C.; Fuster-Martinez, N.; Martinez-Reviriego, P.; Martin-Luna, P.; Fuster, J.] Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, Paterna 46980, Spain, Email: Daniel.Gonzalez-Iglesias@uv.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9383 ISBN Medium
Area Expedition Conference
Notes WOS:000890813600001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5427
Permanent link to this record
 

 
Author Zhang, X.; Xiao, Y.T.; Gimeno, B.
Title Multipactor Suppression by a Resonant Static Magnetic Field on a Dielectric Surface Type Journal Article
Year 2020 Publication IEEE Transactions on Electron Devices Abbreviated Journal IEEE Trans. Electron Devices
Volume 67 Issue 12 Pages 5723-5728
Keywords Radio frequency; Dielectrics; Magnetic resonance; Discharges (electric); Surface discharges; Surface waves; Electrostatics; Monte Carlo simulation; multipactor discharge; orthogonal waves; resonant static magnetic field; secondary electron yield
Abstract In this article, we study the suppression of the multipactor phenomenon on a dielectric surface by a resonant static magnetic field. A homemade Monte Carlo algorithm is developed for multipactor simulations on a dielectric surface driven by two orthogonal radio frequency (RF) electric field components. When the static magnetic field is perpendicular to the tangential and normal RF electric fields, it is shown that if the normal electric field lags the tangential electric field by pi/2, the superposition of the normal and tangential electric fields will trigger a gyro-acceleration of the electron cloud and restrain the multipactor discharge effectively. By contrast, when the normal electric field is in advance of the tangential electric field by pi/2, the difference between the normal and tangential electric fields drives gyro-motion of the electron cloud. Consequently, two enhanced discharge zones are inevitable. The suppression effects of the resonant static magnetic field that is parallel to the tangential RF electric field or to the normal RF electric field are also presented.
Address [Zhang, Xue; Xiao, Yuting] Xiangtan Univ, Sch Automat & Elect Informat, Xiangtan 411105, Hunan, Peoples R China, Email: zhangxue.iecas@yahoo.com;
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9383 ISBN Medium
Area Expedition Conference
Notes WOS:000594337700064 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4627
Permanent link to this record
 

 
Author Zhang, X.; Chang, C.; Gimeno, B.
Title Multipactor Analysis in Circular Waveguides Excited by TM01 Mode Type Journal Article
Year 2019 Publication IEEE Transactions on Electron Devices Abbreviated Journal IEEE Trans. Electron Devices
Volume 66 Issue 11 Pages 4943-4951
Keywords Circular waveguide; multipactor; ponderomotive force; TM01 mode
Abstract A series of detailed numerical simulations are used to investigate the properties ofmultipactor breakdown in circularwaveguidespropagating the TM01 mode. AMonte Carlo model is constructed to track the motion of the electrons, study the multipactor scenarios, and predict the multipactor thresholds. The theoretical and numerical analyses indicate that the product of the frequency and the gap (f . D) affects both the intensity of the ponderomotive force and its spatial distribution, which results from the nonuniformity of the radio frequency (RF) field and significantly influences the electrons' trajectoriesandmultipactor trends. The decrease in f . D results in a remarkable enhancement in the magnitude of the ponderomotive force, while the maximal intensity gradually moves toward the half radius R/2 area. Low values of f . D correspond to high ponderomotive potential, which sustains the short-range electrons and triggers the single-sidedmultipactor. In contrast, high values of f . D correspond to low ponderomotive potential, contributing to long-range electrons and exciting the double-sided multipactor. Fitting to the susceptibility diagram produces the border line and a modified f . D threshold of (f . D) th approximate to 338.4 GHz mm, which separates the susceptibility diagram into single-sided, double-sided, andmixed-sided zones. The initial electron energy influences their trajectories at high f . D and low RF power. This effect tends to dominate the multipactor behavior in the mixed-sided region.
Address [Zhang, Xue] Xiangtan Univ, Coll Informat Engn, Xiangtan 411105, Hunan, Peoples R China, Email: zhangxue.iecas@yahoo.com;
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9383 ISBN Medium
Area Expedition Conference
Notes WOS:000494419900066 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4191
Permanent link to this record
 

 
Author Berenguer, A.; Coves, A.; Gimeno, B.; Bronchalo, E.; Boria, V.E.
Title Experimental Study of the Multipactor Effect in a Partially Dielectric-Loaded Rectangular Waveguide Type Journal Article
Year 2019 Publication IEEE Microwave and Wireless Components Letters Abbreviated Journal IEEE Microw. Wirel. Compon. Lett.
Volume 29 Issue 9 Pages 595-597
Keywords Dielectric; multipactor effect; rectangular waveguide; RF breakdown; Secondary Electron Yield (SEY); waveguide transformer
Abstract This letter presents the experimental study of the multipactor threshold in a partially dielectric-loaded rectangular waveguide, whose results validate a multipactor model recently developed by the authors, which includes the charge distribution appearing on the dielectric surface during the multipactor discharge. First, the variation of the multipactor RF voltage threshold has been theoretically analyzed in different waveguide configurations: in an empty waveguide, and also in the cases of a one-sided and two-sided dielectric-loaded waveguides. To reach this aim, an in-house Monte Carlo simulation tool has been developed. The Secondary Electron Yield (SEY) of the metallic and dielectric materials used in the numerical simulations have been measured experimentally. Finally, an aluminum WR-75 symmetric E-plane rectangular waveguide transformer has been designed and fabricated, in which several multipaction tests have been carried out to validate the in-house software tool, demonstrating an excellent agreement between the simulation results and the experimental data.
Address [Berenguer, Andres; Coves, Angela; Bronchalo, Enrique] Univ Miguel Hernandez Elche, Dept Commun Engn, Elche 03202, Spain, Email: angela.coves@umh.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1531-1309 ISBN Medium
Area Expedition Conference
Notes WOS:000489754400009 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4170
Permanent link to this record
 

 
Author Coves, A.; Maestre, H.; Archiles, R.; Andres, M.V.; Gimeno, B.
Title Surface-Impedance Formulation for Hollow-Core Waveguides Based on Subwavelength Gratings Type Journal Article
Year 2022 Publication IEEE Access Abbreviated Journal IEEE Access
Volume 10 Issue Pages 18843-18854
Keywords Electromagnetic waveguides; Optical waveguides; Planar waveguides; Gratings; Surface waves; Surface impedance; Optical surface waves; Surface impedance; hollow-core waveguide; surface-relief grating
Abstract A rigorous Surface Impedance (SI) formulation for planar waveguides is presented. This modal technique splits the modal analysis of the waveguide in two steps. First, we obtain the modes characteristic equations as a function of the SI and, second, we need to obtain the surface impedance values using either analytical or numerical methods. We validate the technique by comparison with well-known analytical cases: the parallel-plate waveguide with losses and the dielectric slab waveguide. Then, we analyze an optical hollow-core waveguide defined by two high-contrast subwavelength gratings validating our results by comparison with reported values. Finally, we show the potential of our formulation with the analysis of a THz hollow-core waveguide defined by two surface-relief subwavelength gratings, including material losses in our formulation.
Address [Coves, Angela; Maestre, Haroldo] Univ Miguel Hernandez Elche, Dept Commun Engn I3E, Elche 03202, Spain, Email: angela.coves@umh.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-3536 ISBN Medium
Area Expedition Conference
Notes WOS:000760714900001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5139
Permanent link to this record
 

 
Author Albiol, F.; Corbi, A.; Albiol, A.
Title Densitometric Radiographic Imaging With Contour Sensors Type Journal Article
Year 2019 Publication IEEE Access Abbreviated Journal IEEE Access
Volume 7 Issue Pages 18902-18914
Keywords Conventional X-ray imaging; contour data; densitometric images; dynamic range; depth information
Abstract We present the technical/physical foundations of a new imaging technique that combines ordinary radiographic information (generated by conventional X-ray settings) with the patient's volume to derive densitometric images. Traditionally, these images provide quantitative information about tissues densities. In our approach, they graphically enhance either soft or bony regions. After measuring the patient's volume with contour recognition devices, the physical traversed lengths within it (as the Roentgen beam intersects the patient) are calculated and pixel-wise associated with the original radiograph (X). In order to derive this map of lengths (L), the camera equations of the X-ray system and the contour sensor are determined. The patient's surface is also translated to the point-of-view of the X-ray beam and all its entrance/exit points are sought with the help of ray-casting methods. The derived L is applied to X as a physical operation (subtraction), obtaining soft tissue-(D-S) or bone-enhanced (D'(B)) figures. In the D-S type, the contained graphical information can be linearly mapped to the average electronic density (traversed by the X-ray beam). This feature represents an interesting proof-of-concept of associating density data to radiographs, but most important, their intensity histogram is objectively compressed, i.e., the dynamic range is more shrunk (compared against the corresponding X). This leads to other advantages: improvement in the visibility of border/edge areas (high gradient), extended manual window level/width manipulations during screening, and immediate correction of underexposed X instances. In the D-B' type, high-density elements are highlighted and easier to discern. All these results can be achieved with low-energy beam exposures, saving costs and dose. Future work will deepen this clinical side of our research. In contrast with other image-based modifiers, the proposed method is grounded on the measurement of a physical entity: the span of the X-ray beam within a body while undertaking a radiographic examination.
Address [Albiol, Francisco; Corbi, Alberto] CSIC, Inst Fis Corpuscular, Paterna 46980, Spain, Email: kiko@ific.uv.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-3536 ISBN Medium
Area Expedition Conference
Notes WOS:000459591800001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3920
Permanent link to this record
 

 
Author Das, B. et al; Algora, A.
Title Broken seniority symmetry in the semimagic proton mid-shell nucleus 95Rh Type Journal Article
Year 2024 Publication Physical Review Research Abbreviated Journal Phys. Rev. Res.
Volume 6 Issue 2 Pages L022038 - 7pp
Keywords
Abstract Lifetime measurements of low-lying excited states in the semimagic ( N = 50) nucleus 95 Rh have been performed by means of the fast -timing technique. The experiment was carried out using gamma -ray detector arrays consisting of LaBr 3 (Ce) scintillators and germanium detectors integrated into the DESPEC experimental setup commissioned for the Facility for Antiproton and Ion Research ( FAIR ) Phase -0, Darmstadt, Germany. The excited states in 95 Rh were populated primarily via the /3 decays of 95 Pd nuclei, produced in the projectile fragmentation of a 850 MeV / nucleon 124 Xe beam impinging on a 4 g / cm 2 9 Be target. The deduced electromagnetic E2 transition strengths for the gamma -ray cascade within the multiplet structure depopulating from the isomeric I pi = 21 / 2 + state are found to exhibit strong deviations from predictions of standard shell model calculations which feature approximately conserved seniority symmetry. In particular, the observation of a strongly suppressed E2 strength for the 13 / 2 + -> 9 / 2 + ground state transition cannot be explained by calculations employing standard interactions. This remarkable result may require revision of the nucleon-nucleon interactions employed in state-of-the-art theoretical model calculations, and might also point to the need for including three-body forces in the Hamiltonian.
Address [Das, B.; Cederwall, B.; Qi, C.; Aktas, O.; Liotta, R.; Vasiljevic, J.] KTH Royal Inst Technol, S-10691 Stockholm, Sweden, Email: b.das@gsi.de;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:001240855200002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6147
Permanent link to this record
 

 
Author Karuseichyk, I.; Sorelli, G.; Walschaers, M.; Treps, N.; Gessner, M.
Title Resolving mutually-coherent point sources of light with arbitrary statistics Type Journal Article
Year 2022 Publication Physical Review Research Abbreviated Journal Phys. Rev. Res.
Volume 4 Issue 4 Pages 043010 - 11pp
Keywords
Abstract We analyze the problem of resolving two mutually coherent point sources with arbitrary quantum statistics, mutual phase, and relative and absolute intensity. We use a sensitivity measure based on the method of moments and compare direct imaging with spatial-mode demultiplexing (SPADE), analytically proving advantage of the latter. We show that the moment-based sensitivity of SPADE saturates the quantum Fisher information for all known cases, even for non-Gaussian states of the sources.
Address [Karuseichyk, Ilya; Sorelli, Giacomo; Walschaers, Mattia; Treps, Nicolas] Univ PSL, Sorbonne Univ, Coll France, Lab Kastler Brossel,ENS,CNRS, 4 Pl Jussieu, F-75252 Paris, France, Email: ilya.karuseichyk@lkb.upmc.fr
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000876858200004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5400
Permanent link to this record
 

 
Author n_TOF Collaboration (Amaducci, S. et al); Babiano-Suarez, V.; Caballero-Ontanaya, L.; Domingo-Pardo, C.; Ladarescu, I.; Tain, J.L.; Tarifeño-Saldivia, A.
Title Measurement of the 140Ceðn;γþ Cross Section at n_TOF and Its Astrophysical Implications for the Chemical Evolution of the Universe Type Journal Article
Year 2024 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 132 Issue 12 Pages 122701 - 8pp
Keywords
Abstract 140Ce(n, gamma) is a key reaction for slow neutron -capture (s -process) nucleosynthesis due to being a bottleneck in the reaction flow. For this reason, it was measured with high accuracy (uncertainty approximate to 5%) at the n_TOF facility, with an unprecedented combination of a high purity sample and low neutron -sensitivity detectors. The measured Maxwellian averaged cross section is up to 40% higher than previously accepted values. Stellar model calculations indicate a reduction around 20% of the s -process contribution to the Galactic cerium abundance and smaller sizeable differences for most of the heavier elements. No variations are found in the nucleosynthesis from massive stars.
Address [Amaducci, S.; Cosentino, L.; Finocchiaro, P.; Brown, A.] INFN, Lab Nazl Sud, Catania, Italy
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:001202102900011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6074
Permanent link to this record