|   | 
Details
   web
Records
Author Allanach, B.C.; Martin, S.P.; Robertson, D.G.; Ruiz de Austri, R.
Title The inclusion of two-loop SUSYQCD corrections to gluino and squark pole masses in the minimal and next-to-minimal supersymmetric standard model: SOFTSUSY3.7 Type Journal Article
Year 2017 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.
Volume 219 Issue Pages 339-345
Keywords Gluino; Squark; MSSM; NMSSM
Abstract We describe an extension of the SOFTSUSY spectrum calculator to include two-loop supersymmetric QCD (SUSYQCD) corrections of order O(alpha(2)(s)) to gluino and squark pole masses, either in the minimal supersymmetric standard model (MSSM) or the next-to-minimal supersymmetric standard model (NMSSM). This document provides an overview of the program and acts as a manual for the new version of SOFTSUSY, which includes the increase in accuracy in squark and gluino pole mass predictions. Program summary Program title: SOFTSUSY Program Files doi: http://dx.doLorg/10.17632/sh77x9j7hs.1 Licensing provisions: GNU GPLv3 Programming language: C++, fortran, C Nature of problem: Calculating supersymmetric particle spectrum, mixing parameters and couplings in the MSSM or the NMSSM. The solution to the renormalization group equations must be consistent with theoretical boundary conditions on supersymmetry breaking parameters, as well as a weak-scale boundary condition on gauge couplings, Yukawa couplings and the Higgs potential parameters. Solution method: Nested fixed point iteration. Restrictions: SOFTSUSY will provide a solution only in the perturbative regime and it assumes that all couplings of the model are real (i.e. CP-conserving). If the parameter point under investigation is nonphysical for some reason (for example because the electroWeak potential does not have an acceptable minimum), SOFTSUSY returns an error message. The higher order corrections included are for the MSSM (R-parity conserving or violating) or the real R-parity conserving NMSSM only. Journal reference of previous version: Comput. Phys. Comm. 189 (2015) 192. Does the new version supersede the previous version?: Yes. Reasons for the new version: It is desirable to improve the accuracy of the squark and gluinos mass predictions, since they strongly affect supersymmetric particle production cross-sections at colliders. Summary of revisions: The calculation of the squark and gluino pole masses is extended to be of next-to next-to leading order in SUSYQCD, i.e. including terms up to O(g(s)(4)/(16 pi(2))(2)). Additional comments: Program obtainable from http://softsusy.hepforge.org/
Address [Allanach, B. C.] Univ Cambridge, DAMTP, CMS, Wilberforce Rd, Cambridge CB3 0WA, England, Email: rruiz@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0010-4655 ISBN Medium
Area Expedition Conference
Notes WOS:000407984100030 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3258
Permanent link to this record
 

 
Author van Beekveld, M.; Beenakker, W.; Caron, S.; Ruiz de Austri, R.
Title The case for 100 GeV bino dark matter: a dedicated LHC tri-lepton search Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 154 - 26pp
Keywords Supersymmetry Phenomenology
Abstract Global fit studies performed in the pMSSM and the photon excess signal originating from the Galactic Center seem to suggest compressed electroweak supersymmetric spectra with a similar to 100 GeV bino-like dark matter particle. We find that these scenarios are not probed by traditional electroweak supersymmetry searches at the LHC. We propose to extend the ATLAS and CMS electroweak supersymmetry searches with an improved strategy for bino-like dark matter, focusing on chargino plus next-to-lightest neutralino production, with a subsequent decay into a tri-lepton final state. We explore the sensitivity for pMSSM scenarios with Delta m = m(NLSP) – m(LSF) similar to(5 – 50) GeV in the root s = 14 TeV run of the LHC. Counterintuitively, we find that the requirement of low missing transverse energy increases the sensitivity compared to the current ATLAS and CMS searches. With 300 fb(-1) of data we expect the LHC experiments to be able to discover these supersymmetric spectra with mass gaps down to Am 9 GeV for DM masses between 40 and 140 GeV. We stress the importance of a dedicated search strategy that targets precisely these favored pMSSM spectra.
Address [van Beekveld, Melissa; Beenakker, Wim; Caron, Sascha] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys, Heyendaalseweg 135, NL-6525 ED Nijmegen, Netherlands, Email: mcbeekveld@gmail.com;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000375055200007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2648
Permanent link to this record
 

 
Author Johannesson, G.; Ruiz de Austri, R.; Vincent, A.C.; Moskalenko, I.V.; Orlando, E.; Porter, T.A.; Strong, A.W.; Trotta, R.; Feroz, F.; Graff, P.; Hobson, M.P.
Title Bayesian analysis of cosmic-ray propagation: evidence against homogeneous diffusion Type Journal Article
Year 2016 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 824 Issue 1 Pages 16 - 19pp
Keywords astroparticle physics; cosmic rays; diffusion; Galaxy: general; ISM: general; methods: statistical
Abstract We present the results of the most complete scan of the parameter space for cosmic ray (CR) injection and propagation. We perform a Bayesian search of the main GALPROP parameters, using the MultiNest nested sampling algorithm, augmented by the BAMBI neural network machine-learning package. This is the first study to separate out low-mass isotopes (p, (p) over bar and He) from the usual light elements (Be, B, C, N, and O). We find that the propagation parameters that best-fit p, (p) over bar, and He data are significantly different from those that fit light elements, including the B/C and Be-10/Be-9 secondary-to-primary ratios normally used to calibrate propagation parameters. This suggests that each set of species is probing a very different interstellar medium, and that the standard approach of calibrating propagation parameters using B/C can lead to incorrect results. We present posterior distributions and best-fit parameters for propagation of both sets of nuclei, as well as for the injection abundances of elements from H to Si. The input GALDEF files with these new parameters will be included in an upcoming public GALPROP update.
Address [Johannesson, G.] Univ Iceland, Inst Sci, Dunhaga 3, IS-107 Reykjavik, Iceland
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000377937300016 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2727
Permanent link to this record
 

 
Author De Romeri, V.; Kim, J.S.; Martin Lozano, V.; Rolbiecki, K.; Ruiz de Austri, R.
Title Confronting dark matter with the diphoton excess from a parent resonance decay Type Journal Article
Year 2016 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 76 Issue 5 Pages 262 - 13pp
Keywords
Abstract A diphoton excess with an invariant mass of about 750 GeV has been recently reported by both ATLAS and CMS experiments at LHC. While the simplest interpretation requires the resonant production of a 750 GeV (pseudo) scalar, here we consider an alternative setup, with an additional heavy parent particle which decays into a pair of 750 GeV resonances. This configuration improves the agreement between the 8 and 13 TeV data. Moreover, we include a dark matter candidate in the form of a Majorana fermion which interacts through the 750 GeV portal. The invisible decays of the light resonance help to suppress additional decay channels into Standard Model particles in association with the diphoton signal. We realise our hierarchical framework in the context of an effective theory, and we analyse the diphoton signal as well as the consistency with other LHC searches. We finally address the interplay of the LHC results with the dark matter phenomenology, namely the compatibility with the relic density abundance and the indirect detection bounds.
Address [De Romeri, Valentina; Kim, Jong Soo; Martin-Lozano, Victor; Rolbiecki, Krzysztof] Univ Autonoma Madrid, Inst Fis Teor UAM CSIC, E-28049 Madrid, Spain, Email: valentina.deromeri@uam.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000399931700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3088
Permanent link to this record
 

 
Author Liem, S.; Bertone, G.; Calore, F.; Ruiz de Austri, R.; Tait, T.M.P.; Trotta, R.; Weniger, C.
Title Effective field theory of dark matter: a global analysis Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue 9 Pages 077 - 22pp
Keywords Beyond Standard Model; Cosmology of Theories beyond the SM; Effective field theories
Abstract We present global fits of an effective field theory description of real, and complex scalar dark matter candidates. We simultaneously take into account all possible dimension 6 operators consisting of dark matter bilinears and gauge invariant combinations of quark and gluon fields. We derive constraints on the free model parameters for both the real (five parameters) and complex (seven) scalar dark matter models obtained by combining Planck data on the cosmic microwave background, direct detection limits from LUX, and indirect detection limits from the Fermi Large Area Telescope. We find that for real scalars indirect dark matter searches disfavour a dark matter particle mass below 100 GeV. For the complex scalar dark matter particle current data have a limited impact due to the presence of operators that lead to p-wave annihilation, and also do not contribute to the spin-independent scattering cross-section. Although current data are not informative enough to strongly constrain the theory parameter space, we demonstrate the power of our formalism to reconstruct the theoretical parameters compatible with an actual dark matter detection, by assuming that the excess of gamma rays observed by the Fermi Large Area Telescope towards the Galactic centre is entirely due to dark matter annihilations. Please note that the excess can very well be due to astrophysical sources such as millisecond pulsars. We find that scalar dark matter interacting via effective field theory operators can in principle explain the Galactic centre excess, but that such interpretation is in strong tension with the non-detection of gamma rays from dwarf galaxies in the real scalar case. In the complex scalar case there is enough freedom to relieve the tension.
Address [Liem, Sebastian; Bertone, Gianfranco; Calore, Francesca; Weniger, Christoph] Univ Amsterdam, GRAPPA, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands, Email: sebastian.liem@uva.nl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000383545500003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2864
Permanent link to this record
 

 
Author Cabrera, M.E.; Casas, J.A.; Delgado, A.; Robles, S.; Ruiz de Austri, R.
Title Naturalness of MSSM dark matter Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 058 - 30pp
Keywords Supersymmetry Phenomenology
Abstract There exists a vast literature examining the electroweak (EW) fine-tuning problem in supersymmetric scenarios, but little concerned with the dark matter (DM) one, which should be combined with the former. In this paper, we study this problem in an, as much as possible, exhaustive and rigorous way. We have considered the MSSM framework, assuming that the LSP is the lightest neutralino, chi(0)(1), and exploring the various possibilities for the mass and composition of chi(0)(1), as well as different mechanisms for annihilation of the DM particles in the early Universe (well-tempered neutralinos, funnels and co-annihilation scenarios). We also present a discussion about the statistical meaning of the fine-tuning and how it should be computed for the DM abundance, and combined with the EW fine-tuning. The results are very robust and model-independent and favour some scenarios (like the h-funnel when M-chi 10 is not too close to m(h)/2) with respect to others (such as the pure wino case). These features should be taken into account when one explores “natural SUSY” scenarios and their possible signatures at the LHC and in DM detection experiments.
Address [Cabrera, Maria Eugenia] Univ Sao Paulo, Inst Fis, BR-05508900 Sao Paulo, SP, Brazil, Email: mcabrera@if.usp.br;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000382166600004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2797
Permanent link to this record
 

 
Author Caron, S.; Kim, J.S.; Rolbiecki, K.; Ruiz de Austri, R.; Stienen, B.
Title The BSM-AI project: SUSY-AI-generalizing LHC limits on supersymmetry with machine learning Type Journal Article
Year 2017 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 77 Issue 4 Pages 257 - 25pp
Keywords
Abstract A key research question at the Large Hadron Collider is the test of models of new physics. Testing if a particular parameter set of such a model is excluded by LHC data is a challenge: it requires time consuming generation of scattering events, simulation of the detector response, event reconstruction, cross section calculations and analysis code to test against several hundred signal regions defined by the ATLAS and CMS experiments. In the BSM-AI project we approach this challenge with a new idea. A machine learning tool is devised to predict within a fraction of a millisecond if a model is excluded or not directly from the model parameters. A first example is SUSY-AI, trained on the phenomenological supersymmetric standard model (pMSSM). About 300,000 pMSSM model sets – each tested against 200 signal regions by ATLAS – have been used to train and validate SUSY-AI. The code is currently able to reproduce theATLAS exclusion regions in 19 dimensions with an accuracy of at least 93%. It has been validated further within the constrained MSSM and the minimal natural supersymmetric model, again showing high accuracy. SUSY-AI and its future BSM derivatives will help to solve the problem of recasting LHC results for any model of new physics. SUSY-AI can be downloaded from http://susyai.hepforge.org/. An on-line interface to the program for quick testing purposes can be found at http://www.susy-ai.org/.
Address [Caron, Sascha; Stienen, Bob] Radboud Univ Nijmegen, IMAPP, Nijmegen, Netherlands, Email: krolb@fuw.edu.pl
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000400079300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3097
Permanent link to this record
 

 
Author Kim, J.S.; Rolbiecki, K.; Ruiz de Austri, R.; Tattersall, J.; Weber, T.
Title Prospects for natural SUSY Type Journal Article
Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 94 Issue 9 Pages 095013 - 19pp
Keywords
Abstract As we anticipate the first results of the 2016 run, we assess the discovery potential of the LHC to “natural supersymmetry.” To begin with, we explore the region of the model parameter space that can be excluded with various center-of-mass energies (13 TeV and 14 TeV) and different luminosities (20 fb(-1), 100 fb(-1), 300 fb(-1) and 3000 fb(-1)). We find that the bounds at 95% C.L. on stops vary from m((t1) over tilde) greater than or similar to 800 GeV expected this summer to m((t1) over tilde) greater than or similar to 1500 GeV at the end of the high luminosity run, while gluino bounds are expected to range from m((g) over tilde) greater than or similar to 1700 GeV to m((g) over tilde) greater than or similar to 2500 GeV over the same time period. However, more pessimistically, we find that if no signal begins to appear this summer, only a very small region of parameter space can be discovered with 5 sigma significance. For this conclusion to change, we find that both theoretical and systematic uncertainties will need to be significantly reduced.
Address [Kim, J. S.] UAM CSIC, Inst Fis Teor, Madrid 28049, Spain, Email: jong.kim@csic.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000391715200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2925
Permanent link to this record
 

 
Author Gomez-Vargas, G.A.; Lopez-Fogliani, D.E.; Muñoz, C.; Perez, A.D.; Ruiz de Austri, R.
Title Search for sharp and smooth spectral signatures of μnu SSM gravitino dark matter with Fermi- LAT Type Journal Article
Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 047 - 23pp
Keywords dark matter experiments; dark matter theory; gamma ray experiments
Abstract The μnu SSM solves the μproblem of supersymmetric models and reproduces neutrino data, simply using couplings with right-handed neutrinos nu's. Given that these couplings break explicitly R parity, the gravitino is a natural candidate for decaying dark matter in the μnu SSM. In this work we carry out a complete analysis of the detection of μnu SSM gravitino dark matter through gamma-ray observations. In addition to the two-body decay producing a sharp line, we include in the analysis the three-body decays producing a smooth spectral signature. We perform first a deep exploration of the low-energy parameter space of the μnu SSM taking into account that neutrino data must be reproduced. Then, we compare the gamma-ray fluxes predicted by the model with Fermi-LAT observations. In particular, with the 95% CL upper limits on the total diffuse extragalactic gamma-ray background using 50 months of data, together with the upper limits on line emission from an updated analysis using 69.9 months of data. For standard values of bino and wino masses, gravitinos with masses larger than about 4 GeV, or lifetimes smaller than about 10(28) s, produce too large fluxes and are excluded as dark matter candidates. However, when limiting scenarios with large and close values of the gaugino masses are considered, the constraints turn out to be less stringent, excluding masses larger than 17 GeV and lifetimes smaller than 4 x 10(25) s.
Address [Gomez-Vargas, German A.; Lopez-Fogliani, Daniel E.; Munoz, Carlos; Perez, Andres D.; Ruiz de Austri, Roberto] Pontificia Univ Catolica Chile, AInstituto Astrofis, Ave Vicu Mackenna 4860, Santiago, Chile, Email: ggomezv@uc.cl;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000405653700036 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3210
Permanent link to this record
 

 
Author MoEDAL Collaboration (Acharya, B. et al); Bernabeu, J.; Garcia, C.; Mamuzic, J.; Mitsou, V.A.; Ruiz de Austri, R.; Vento, V.; Vives, O.
Title Search for Magnetic Monopoles with the MoEDAL Forward Trapping Detector in 13 TeV Proton-Proton Collisions at the LHC Type Journal Article
Year 2017 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 118 Issue 6 Pages 061801 - 6pp
Keywords
Abstract MoEDAL is designed to identify new physics in the form of long-lived highly ionizing particles produced in high-energy LHC collisions. Its arrays of plastic nuclear-track detectors and aluminium trapping volumes provide two independent passive detection techniques. We present here the results of a first search for magnetic monopole production in 13 TeV proton-proton collisions using the trapping technique, extending a previous publication with 8 TeV data during LHC Run 1. A total of 222 kg of MoEDAL trapping detector samples was exposed in the forward region and analyzed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges exceeding half the Dirac charge are excluded in all samples and limits are placed for the first time on the production of magnetic monopoles in 13 TeV pp collisions. The search probes mass ranges previously inaccessible to collider experiments for up to five times the Dirac charge.
Address [Acharya, B.; Alexandre, J.; Ellis, J. R.; Fairbairn, M.; Mavromatos, N. E.; Sakellariadou, M.; Sarkar, S.] Kings Coll London, Dept Phys, Theoret Particle Phys & Cosmol Grp, London, England, Email: philippe.mermod@cern.ch
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000393747300004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2969
Permanent link to this record