toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Casals, M.; Fabbri, A.; Martinez, C.; Zanelli, J. url  doi
openurl 
  Title Quantum dress for a naked singularity Type (up) Journal Article
  Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 760 Issue Pages 244-248  
  Keywords Semiclassical gravity; Quantum backreaction; Cosmic censorship; Black holes; Naked singularities; BTZ  
  Abstract We investigate semiclassical backreaction on a conical naked singularity space-time with a negative cosmological constant in (2 + 1)-dimensions. In particular, we calculate the renormalized quantum stress-energy tensor for a conformally coupled scalar field on such naked singularity space-time. We then obtain the backreacted metric via the semiclassical Einstein equations. We show that, in the regime where the semiclassical approximation can be trusted, backreaction dresses the naked singularity with an event horizon, thus enforcing (weak) cosmic censorship.  
  Address [Casals, Marc] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil, Email: mcasals@cbpf.br;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000382890500037 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2804  
Permanent link to this record
 

 
Author Casals, M.; Fabbri, A.; Martinez, C.; Zanelli, J. url  doi
openurl 
  Title Quantum Backreaction on Three-Dimensional Black Holes and Naked Singularities Type (up) Journal Article
  Year 2017 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 118 Issue 13 Pages 131102 - 6pp  
  Keywords  
  Abstract We analytically investigate backreaction by a quantum scalar field on two rotating Bañados-Teitelboim-Zanelli (BTZ) geometries: that of a black hole and that of a naked singularity. In the former case, we explore the quantum effects on various regions of relevance for a rotating black hole space-time. We find that the quantum effects lead to a growth of both the event horizon and the radius of the ergosphere, and to a reduction of the angular velocity, compared to the unperturbed values. Furthermore, they give rise to the formation of a curvature singularity at the Cauchy horizon and show no evidence of the appearance of a superradiant instability. In the case of a naked singularity, we find that quantum effects lead to the formation of a horizon that shields it, thus supporting evidence for the role of quantum mechanics as a cosmic censor in nature.  
  Address [Casals, Marc] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil, Email: mcasals@cbpf.br;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000397809100005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3026  
Permanent link to this record
 

 
Author Fabbri, A.; Pavloff, N. url  doi
openurl 
  Title Momentum correlations as signature of sonic Hawking radiation in Bose-Einstein condensates Type (up) Journal Article
  Year 2018 Publication Scipost Physics Abbreviated Journal SciPost Phys.  
  Volume 4 Issue 4 Pages 019 - 45pp  
  Keywords  
  Abstract We study the two-body momentum correlation signal in a quasi one dimensional Bose-Einstein condensate in the presence of a sonic horizon. We identify the relevant correlation lines in momentum space and compute the intensity of the corresponding signal. We consider a set of different experimental procedures and identify the specific issues of each measuring process. We show that some inter-channel correlations, in particular the Hawking quantum-partner one, are particularly well adapted for witnessing quantum non-separability, being resilient to the effects of temperature and/or quantum quenches.  
  Address [Fabbri, Alessandro] Museo Stor Fis & Ctr Studi & Ric Enrico Fermi, Ctr Fermi, Piazza Viminale 1, I-00184 Rome, Italy  
  Corporate Author Thesis  
  Publisher Scipost Foundation Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2542-4653 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000432739900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3583  
Permanent link to this record
 

 
Author Dudley, R.A.; Anderson, P.R.; Balbinot, R.; Fabbri, A. url  doi
openurl 
  Title Correlation patterns from massive phonons in 1+1 dimensional acoustic black holes: A toy model Type (up) Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 98 Issue 12 Pages 124011 - 18pp  
  Keywords  
  Abstract Transverse excitations in analogue black holes induce a masslike term in the longitudinal mode equation. With a simple toy model we show that correlation functions display a rather rich structure characterized by groups of approximately parallel peaks. For the most part the structure is completely different from that found in the massless case.  
  Address [Dudley, Richard A.; Anderson, Paul R.] Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA, Email: dudlra13@wfu.edu;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000452979300003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3834  
Permanent link to this record
 

 
Author Martone, G.I.; Larre, P.E.; Fabbri, A.; Pavloff, N. url  doi
openurl 
  Title Momentum distribution and coherence of a weakly interacting Bose gas after a quench Type (up) Journal Article
  Year 2018 Publication Physical Review A Abbreviated Journal Phys. Rev. A  
  Volume 98 Issue 6 Pages 063617 - 21pp  
  Keywords  
  Abstract We consider a weakly interacting uniform atomic Bose gas with a time-dependent nonlinear coupling constant. By developing a suitable Bogoliubov treatment we investigate the time evolution of several observables, including the momentum distribution, the degree of coherence in the system, and their dependence on dimensionality and temperature. We rigorously prove that the low-momentum Bogoliubov modes remain frozen during the whole evolution, while the high-momentum ones adiabatically follow the change in time of the interaction strength. At intermediate momenta we point out the occurrence of oscillations, which are analogous to Sakharov oscillations. We identify two wide classes of time-dependent behaviors of the coupling for which an exact solution of the problem can be found, allowing for an analytic computation of all the relevant observables. A special emphasis is put on the study of the coherence property of the system in one spatial dimension. We show that the system exhibits a smooth “light-cone effect,” with typically no prethermalization.  
  Address [Martone, Giovanni I.; Pavloff, Nicolas] Univ Paris Saclay, Univ Paris Sud, CNRS, LPTMS,UMR 8626, F-91405 Orsay, France  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000452949900009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3841  
Permanent link to this record
 

 
Author Anderson, P.R.; Clark, R.D.; Fabbri, A.; Good, M.R.R. url  doi
openurl 
  Title Late time approach to Hawking radiation: Terms beyond leading order Type (up) Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 100 Issue 6 Pages 061703 - 5pp  
  Keywords  
  Abstract Black hole evaporation is studied using wave packets for the modes. These allow for approximate frequency and time resolution. The leading order late time behavior gives the well-known Hawking radiation that is independent of how the black hole formed. The focus here is on the higher order terms and the rate at which they damp at late times. Some of these terms carry information about how the black hole formed. A general argument is given which shows that the damping is significantly slower (power law) than what might be naively expected from a stationary phase approximation (exponential). This result is verified by numerical calculations in the cases of 2D and 4D black holes that form from the collapse of a null shell.  
  Address [Anderson, Paul R.; Clark, Raymond D.] Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA, Email: anderson@wfu.edu;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000487736400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4151  
Permanent link to this record
 

 
Author Balbinot, R.; Fabbri, A.; Dudley, R.A.; Anderson, P.R. url  doi
openurl 
  Title Particle production in the interiors of acoustic black holes Type (up) Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 100 Issue 10 Pages 105021 - 13pp  
  Keywords  
  Abstract Phonon creation inside the horizons of acoustic black holes is investigated using two simple toy models. It is shown that, unlike what occurs in the exterior regions, the spectrum is not thermal. This nonthermality is due to the anomalous scattering that occurs in the interior regions.  
  Address [Balbinot, Roberto] Univ Bologna, Dipartimento Fis, Via Irnerio 46, I-40126 Bologna, Italy, Email: balbinot@bo.infn.it;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000498879600007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4209  
Permanent link to this record
 

 
Author Casals, M.; Fabbri, A.; Martinez, C.; Zanelli, J. url  doi
openurl 
  Title Quantum-corrected rotating black holes and naked singularities in (2+1) dimensions Type (up) Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 99 Issue 10 Pages 104023 - 39pp  
  Keywords  
  Abstract We analytically investigate the perturbative effects of a quantum conformally coupled scalar field on rotating (2 + 1)-dimensional black holes and naked singularities. In both cases we obtain the quantum-back-reacted metric analytically. In the black hole case, we explore the quantum corrections on different regions of relevance for a rotating black hole geometry. We find that the quantum effects lead to a growth of both the event horizon and the ergosphere, as well as to a reduction of the angular velocity compared to their corresponding unperturbed values. Quantum corrections also give rise to the formation of a curvature singularity at the Cauchy horizon and show no evidence of the appearance of a superradiant instability. In the naked singularity case, quantum effects lead to the formation of a horizon that hides the conical defect, thus turning it into a black hole. The fact that these effects occur not only for static but also for spinning geometries makes a strong case for the role of quantum mechanics as a cosmic censor in Nature.  
  Address [Casals, Marc] CBPF, BR-22290180 Rio De Janeiro, Brazil, Email: mcasals@cbpf.br;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000509560700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4263  
Permanent link to this record
 

 
Author Euve, L.P.; Robertson, S.; James, N.; Fabbri, A.; Rousseaux, G. url  doi
openurl 
  Title Scattering of Co-Current Surface Waves on an Analogue Black Hole Type (up) Journal Article
  Year 2020 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 124 Issue 14 Pages 141101 - 6pp  
  Keywords  
  Abstract We report on what is to our knowledge the first scattering experiment of surface waves on an accelerating transcritical flow, which in the analogue gravity context is described by an effective spacetime with a black-hole horizon. This spacetime has been probed by an incident co-current wave, which partially scatters into an outgoing countercurrent wave on each side of the horizon. The measured scattering amplitudes are compatible with the predictions of the hydrodynamical theory, where the kinematical description in terms of the effective metric is exact.  
  Address [Euve, Leo-Paul] Univ Paris Diderot, Univ PSL, Lab Phys & Mecan Milieux Heterogenes, CNRS,Sorbonne Univ,UMR 7636,ESPCI, 10 Rue Vauquelin, F-75321 Paris 05, France  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000524336600002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4364  
Permanent link to this record
 

 
Author Dudley, R.A.; Fabbri, A.; Anderson, P.R.; Balbinot, R. url  doi
openurl 
  Title Correlations between a Hawking particle and its partner in a 1+1D Bose-Einstein condensate analog black hole Type (up) Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 102 Issue 10 Pages 105005 - 12pp  
  Keywords  
  Abstract The Fourier transform of the density-density correlation function in a Bose-Einstein condensate (BEC) analog black hole is a useful tool to investigate correlations between the Hawking particles and their partners. It can be expressed in terms of <(out)(a) over cap (ext)(up) (out)(a) over cap (int)(up)> where (out)(a) over cap (ext)(up) is the annihilation operator for the Hawking particle and (out)(a) over cap (int)(up) is the corresponding one for the partner. This basic quantity is calculated for three different models for the BEC flow. It is shown that in each model the inclusion of the effective potential in the mode equations makes a significant difference. Furthermore, particle production induced by this effective potential in the interior of the black hole is studied for each model and shown to be nonthermal. An interesting peak that is related to the particle production and is present in some models is discussed.  
  Address [Dudley, Richard A.; Anderson, Paul R.] Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA, Email: dudlra13@wfu.edu;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000584963300005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4590  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva