Bonilla, C., Nebot, M., Valle, J. W. F., & Srivastava, R. (2016). Flavor physics scenario for the 750 GeV diphoton anomaly. Phys. Rev. D, 93(7), 073009–5pp.
Abstract: A simple variant of a realistic flavor symmetry scheme for fermion masses and mixings provides a possible interpretation of the diphoton anomaly as an electroweak singlet “flavon.” The existence of TeV scale vectorlike T-quarks required to provide adequate values for Cabibbo-Kobayashi-Maskawa (CKM) parameters can also naturally account for the diphoton anomaly. Correlations between V-ub and V-cb with the vectorlike T-quark mass can be predicted. Should the diphoton anomaly survive in a future run, our proposed interpretation can also be tested in upcoming B and LHC studies.
|
Mandal, S., Srivastava, R., & Valle, J. W. F. (2021). Electroweak symmetry breaking in the inverse seesaw mechanism. J. High Energy Phys., 03(3), 212–28pp.
Abstract: We investigate the stability of Higgs potential in inverse seesaw models. We derive the full two-loop RGEs of the relevant parameters, such as the quartic Higgs self-coupling, taking thresholds into account. We find that for relatively large Yukawa couplings the Higgs quartic self-coupling goes negative well below the Standard Model instability scale similar to 10(10) GeV. We show, however, that the “dynamical” inverse seesaw with spontaneous lepton number violation can lead to a completely consistent and stable Higgs vacuum up to the Planck scale.
|
Mandal, S., Romao, J. C., Srivastava, R., & Valle, J. W. F. (2021). Dynamical inverse seesaw mechanism as a simple benchmark for electroweak breaking and Higgs boson studies. J. High Energy Phys., 07(7), 029–38pp.
Abstract: The Standard Model (SM) vacuum is unstable for the measured values of the top Yukawa coupling and Higgs mass. Here we study the issue of vacuum stability when neutrino masses are generated through spontaneous low-scale lepton number violation. In the simplest dynamical inverse seesaw, the SM Higgs has two siblings: a massive CP-even scalar plus a massless Nambu-Goldstone boson, called majoron. For TeV scale breaking of lepton number, Higgs bosons can have a sizeable decay into the invisible majorons. We examine the interplay and complementarity of vacuum stability and perturbativity restrictions, with collider constraints on visible and invisible Higgs boson decay channels. This simple framework may help guiding further studies, for example, at the proposed FCC facility.
|
Peinado, E., Reig, M., Srivastava, R., & Valle, J. W. F. (2020). Dirac neutrinos from Peccei-Quinn symmetry: A fresh look at the axion. Mod. Phys. Lett. A, 35(21), 2050176–9pp.
Abstract: We show that a very simple solution to the strong CP problem naturally leads to Dirac neutrinos. Small effective neutrino masses emerge from a type-I Dirac seesaw mechanism. Neutrino mass limits probe the axion parameters in regions currently inaccessible to conventional searches.
|
Centelles Chulia, S., Ma, E., Srivastava, R., & Valle, J. W. F. (2017). Dirac neutrinos and dark matter stability from lepton quarticity. Phys. Lett. B, 767, 209–213.
Abstract: We propose to relate dark matter stability to the possible Dirac nature of neutrinos. The idea is illustrated in a simple scheme where small Dirac neutrino masses arise from a type-I seesaw mechanism as a result of a Z(4) discrete lepton number symmetry. The latter implies the existence of a viable WIMP dark matter candidate, whose stability arises from the same symmetry which ensures the Diracness of neutrinos.
|
Fonseca, R. M., Hirsch, M., & Srivastava, R. (2018). Delta L=3 processes: Proton decay and the LHC. Phys. Rev. D, 97(7), 075026–7pp.
Abstract: We discuss lepton number violation in three units. From an effective field theory point of view, Delta L = 3 processes can only arise from dimension 9 or higher operators. These operators also violate baryon number, hence many of them will induce proton decay. Given the high dimensionality of these operators, in order to have a proton half-life in the observable range, the new physics associated to Delta L = 3 processes should be at a scale as low as 1 TeV. This opens up the possibility of searching for such processes not only in proton decay experiments but also at the LHC. In this work we analyze the relevant d = 9, 11, 13 operators which violate lepton number in three units. We then construct one simple concrete model with interesting low- and high-energy phenomenology.
|
Bonilla, C., Centelles Chulia, S., Cepedello, R., Peinado, E., & Srivastava, R. (2020). Dark matter stability and Dirac neutrinos using only standard model symmetries. Phys. Rev. D, 101(3), 033011–5pp.
Abstract: We provide a generic framework to obtain stable dark matter along with naturally small Dirac neutrino masses generated at the loop level. This is achieved through the spontaneous breaking of the global U(1)(B-L) symmetry already present in the standard model. The U(1)(B-L) symmetry is broken down to a residual even Z(n) (n >= 4) subgroup. The residual Z(n) symmetry simultaneously guarantees dark matter stability and protects the Dirac nature of neutrinos. The U(1)(B-L) symmetry in our setup is anomaly free and can also be gauged in a straightforward way. Finally, we present an explicit example using our framework to show the idea in action.
|
Mandal, S., Rojas, N., Srivastava, R., & Valle, J. W. F. (2021). Dark matter as the origin of neutrino mass in the inverse seesaw mechanism. Phys. Lett. B, 821, 136609–15pp.
Abstract: We propose that neutrino masses are “seeded” by a dark sector within the inverse seesaw mechanism. This way we have a new, “hidden”, variant of the scotogenic scenario for radiative neutrino masses. We discuss both explicit and dynamical lepton number violation. In addition to invisible Higgs decays with majoron emission, we discuss in detail the pheneomenolgy of dark matter, as well as the novel features associated to charged lepton flavour violation, and neutrino physics.
|
Kumar, R., Nath, N., & Srivastava, R. (2024). Cutting the scotogenic loop: adding flavor to dark matter. J. High Energy Phys., 12(12), 036–37pp.
Abstract: We introduce a framework for hybrid neutrino mass generation, wherein scotogenic dark sector particles, including dark matter, are charged non-trivially under the A4 flavor symmetry. The spontaneous breaking of the A4 group to residual Z2 subgroup results in the “cutting” of the radiative loop. As a consequence the neutrinos acquire mass through the hybrid “scoto-seesaw” mass mechanism, combining aspects of both the tree-level seesaw and one-loop scotogenic mechanisms, with the residual Z2 subgroup ensuring the stability of the dark matter. The flavor symmetry also leads to several predictions including the normal ordering of neutrino masses and “generalized μ- tau reflection symmetry” in leptonic mixing. Additionally, it gives testable predictions for neutrinoless double beta decay and a lower limit on the lightest neutrino mass. Finally, A4 -> Z2 breaking also leaves its imprint on the dark sector and ties it with the neutrino masses and mixing. The model allows only scalar dark matter, whose mass has a theoretical upper limit of less than or similar to 600 GeV, with viable parameter space satisfying all dark matter constraints, available only up to about 80 GeV. Conversely, fermionic dark matter is excluded due to constraints from the neutrino sector. Various aspects of this highly predictive framework can be tested in both current and upcoming neutrino and dark matter experiments.
|
Centelles Chulia, S., Srivastava, R., & Valle, J. W. F. (2016). CP violation from flavor symmetry in a lepton quarticity dark matter model. Phys. Lett. B, 761, 431–436.
Abstract: We propose a simple Delta (27) circle times Z(4) model where neutrinos are predicted to be Dirac fermions. The smallness of their masses follows from a type-I seesaw mechanism and the leptonic CP violating phase correlates with the pattern of Delta(27) flavor symmetry breaking. The scheme naturally harbors a WIMP dark matter candidate associated to the Dirac nature of neutrinos, in that the same Z(4) lepton number symmetry also ensures dark matter stability.
|