toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author HAWC Collaboration (Abeysekara, A.U. et al); Salesa Greus, F. url  doi
openurl 
  Title (down) The High-Altitude Water Cherenkov (HAWC) observatory in Mexico: The primary detector Type Journal Article
  Year 2023 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 1052 Issue Pages 168253 - 18pp  
  Keywords Physics – instrumentation and detectors; Water Cherenkov Detectors; Astrophysics; High energy physics – experiment; Nuclear experiment  
  Abstract The High-Altitude Water Cherenkov (HAWC) observatory is a second-generation continuously operated, wide field-of-view, TeV gamma-ray observatory. The HAWC observatory and its analysis techniques build on experience of the Milagro experiment in using ground-based water Cherenkov detectors for gamma-ray astronomy. HAWC is located on the Sierra Negra volcano in Mexico at an elevation of 4100 meters above sea level. The completed HAWC observatory principal detector (HAWC) consists of 300 closely spaced water Cherenkov detectors, each equipped with four photomultiplier tubes to provide timing and charge information to reconstruct the extensive air shower energy and arrival direction. The HAWC observatory has been optimized to observe transient and steady emission from sources of gamma rays within an energy range from several hundred GeV to several hundred TeV. However, most of the air showers detected are initiated by cosmic rays, allowing studies of cosmic rays also to be performed. This paper describes the characteristics of the HAWC main array and its hardware.  
  Address [Abeysekara, A. U.; Barber, A. S.; Hona, B.; Kieda, D.; Newbold, M.; Springer, R. W.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT USA, Email: eduardo.delafuentea@academicos.udg.mx  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001063137300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5674  
Permanent link to this record
 

 
Author Boggia, M.; Cruz-Martinez, J.M.; Frellesvig, H.; Glover, N.; Gomez-Ambrosio, R.; Gonella, G.; Haddad, Y.; Ilnicka, A.; Jones, S.; Kassabov, Z.; Krauss, F.; Megy, T.; Melini, D.; Napoletano, D.; Passarino, G.; Patel, S.; Rodriguez-Vazquez, M.; Wolf, T. url  doi
openurl 
  Title (down) The HiggsTools handbook: a beginners guide to decoding the Higgs sector Type Journal Article
  Year 2018 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 45 Issue 6 Pages 065004 - 152pp  
  Keywords LHC physics; Higgs boson; new physics searches; effective field theories; Higgs momentum distributions  
  Abstract This report summarises some of the activities of the HiggsTools initial training network working group in the period 2015-2017. The main goal of this working group was to produce a document discussing various aspects of state-of-the-art Higgs physics at the large hadron collider (LHC) in a pedagogic manner The first part of the report is devoted to a description of phenomenological searches for new physics (NP) at the LHC. All of the available studies of the couplings of the new resonance discovered in 2012 by the ATLAS and CMS experiments (Aad et al (ATLAS Collaboration) 2012 Phys. Lett. B 716 1-29; Chatrchyan et al (CMS Collaboration) 2012 Phys. Lett. B 716 30-61) conclude that it is compatible with the Higgs boson of the standard model (SM) within present precision. So far the LHC experiments have given no direct evidence for any physical phenomena that cannot be described by the SM. As the experimental measurements become more and more precise, there is a pressing need for a consistent framework in which deviations from the SM predictions can be computed precisely. Such a framework should be applicable to measurements in all sectors of particle physics, not only LHC Higgs measurements but also electroweak precision data, etc. We critically review the use of the k-framework, fiducial and simplified template cross sections, effective field theories, pseudoobservables and phenomenological Lagrangians. Some of the concepts presented here are well known and were used already at the time of the large electron-positron collider (LEP) experiment. However, after years of theoretical and experimental development, these techniques have been refined, and we describe new tools that have been introduced in order to improve the comparison between theory and experimental data. In the second part of the report, we propose Phi(eta)* as a new and complementary observable for studying Higgs boson production at large transverse momentum in the case where the Higgs boson decays to two photons. The Phi(eta)* variable depends on measurements of the angular directions and rapidities of the two Higgs decay products rather than the energies, and exploits the information provided by the calorimeter in the detector. We show that, even without tracking information, the experimental resolution for Phi(eta)* is better than that of the transverse momentum of the photon pair, particularly at low transverse momentum. We make a detailed study of the phenomenology of the Phi(eta)* variable, contrasting the behaviour with the Higgs transverse momentum distribution using a variety of theoretical tools including event generators and fixed order perturbative computations. We consider the theoretical uncertainties associated with both p TH and Phi(eta)* distributions. Unlike the transverse momentum distribution, the Phi(eta)* distribution is well predicted using the Higgs effective field theory in which the top quark is integrated out-even at large values of Phi(eta)*-thereby making this a better observable for extracting the parameters of the Higgs interaction. In contrast, the potential of the Phi(eta)* distribution as a probe of NP is rather limited, since although the overall rate is affected by the presence of additional heavy fields, the shape of the Phi(eta)* distribution is relatively insensitive to heavy particle thresholds.  
  Address [Boggia, M.; Gonella, G.; Jones, S.; Megy, T.] Albert Ludwigs Univ Freiburg, Phys Inst, D-79104 Freiburg, Germany, Email: raquel.gomez-ambrosio@durham.ac.uk  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000434094000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3604  
Permanent link to this record
 

 
Author Fidalgo, J.; Lopez-Fogliani, D.E.; Muñoz, C.; Ruiz de Austri, R. url  doi
openurl 
  Title (down) The Higgs sector of the μnu SSM and collider physics Type Journal Article
  Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 020 - 33pp  
  Keywords Higgs Physics; Supersymmetric Effective Theories; Beyond Standard Model  
  Abstract The μnu SSM is a supersymmetric standard model that accounts for light neutrino masses and solves the μproblem of the MSSM by simply using right-handed neutrino superfields. Since this mechanism breaks R-parity, a peculiar structure for the mass matrices is generated. The neutral Higgses are mixed with the right- and left-handed sneutrinos producing 8x8 neutral scalar mass matrices. We analyse the Higgs sector of the μnu SSM in detail, with special emphasis in possible signals at colliders. After studying in general the decays of the Higges, we focus on those processes that are genuine of the μnu SSM, and could serve to distinguish it form other supersymmetric models. In particular, we present viable benchmark points for LHC searches. For example, we find decays of a MSSM-like Higgs into two lightest neutralinos, with the latter decaying inside the detector leading to displaced vertices, and producing final states with 4 and 8 b-jets plus missing energy. Final states with leptons and missing energy are also found.  
  Address [Fidalgo, Javier; Munoz, Carlos] Univ Autonoma Madrid, Dept Fis Teor UAM, E-28049 Madrid, Spain, Email: javier.fidalgo@uam.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000296917100020 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 831  
Permanent link to this record
 

 
Author Fileviez Perez, P.; Golias, E.; Murgui, C.; Plascencia, A.D. url  doi
openurl 
  Title (down) The Higgs and leptophobic force at the LHC Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 087 - 19pp  
  Keywords Beyond Standard Model; Higgs Physics  
  Abstract The Higgs boson could provide the key to discover new physics at the Large Hadron Collider. We investigate novel decays of the Standard Model (SM) Higgs boson into leptophobic gauge bosons which can be light in agreement with all experimental constraints. We study the associated production of the SM Higgs and the leptophobic gauge boson that could be crucial to test the existence of a leptophobic force. Our results demonstrate that it is possible to have a simple gauge extension of the SM at the low scale, without assuming very small couplings and in agreement with all the experimental bounds that can be probed at the LHC.  
  Address [Perez, Pavel Fileviez; Golias, Elliot; Plascencia, Alexis D.] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA, Email: pxf112@case.edu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000553159100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4479  
Permanent link to this record
 

 
Author Cabrera, M.E.; Casas, J.A.; Ruiz de Austri, R. url  doi
openurl 
  Title (down) The health of SUSY after the Higgs discovery and the XENON100 data Type Journal Article
  Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 182 - 47pp  
  Keywords Supersymmetry Phenomenology  
  Abstract We analyze the implications for the status and prospects of supersymmetry of the Higgs discovery and the last XENON data. We focus mainly, but not only, on the CMSSM and NUHM models. Using a Bayesian approach we determine the distribution of probability in the parameter space of these scenarios. This shows that, most probably, they are now beyond the LHC reach. This negative chances increase further (at more than 95% c.l.) if one includes dark matter constraints in the analysis, in particular the last XENON100 data. However, the models would be probed completely by XENON1T. The mass of the LSP neutralino gets essentially fixed around 1TeV. We do not incorporate ad hoc measures of the fine-tuning to penalize unnatural possibilities: such penalization arises automatically from the careful Bayesian analysis itself, and allows to scan the whole parameter space. In this way, we can explain and resolve the apparent discrepancies between the previous results in the literature. Although SUSY has become hard to detect at LHC, this does not necessarily mean that is very fine-tuned. We use Bayesian techniques to show the experimental Higgs mass is at similar to 2 sigma off the CMSSM or NUHM expectation. This is substantial but not dramatic. Although the CMSSM or the NUHM are unlikely to show up at the LHC, they are still interesting and plausible models after the Higgs observation; and, if they are true, the chances of discovering them in future dark matter experiments are quite high.  
  Address [Cabrera, Maria Eugenia] Univ Amsterdam, Inst Theoret Phys, GRAPPA, NL-1012 WX Amsterdam, Netherlands, Email: M.E.CabreraCatalan@uva.nl;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000323202900095 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1572  
Permanent link to this record
 

 
Author Balbinot, R.; Fabbri, A. url  doi
openurl 
  Title (down) The Hawking Effect in the Particles-Partners Correlations Type Journal Article
  Year 2023 Publication Physics Abbreviated Journal Physics  
  Volume 5 Issue 4 Pages 968-982  
  Keywords quantum fields in curved space; black holes; Hawking radiation; correlations across the horizon  
  Abstract We analyze the correlations functions across the horizon in Hawking black hole radiation to reveal the correlations between Hawking particles and their partners. The effects of the underlying space-time on this are shown in various examples ranging from acoustic black holes to regular black holes.  
  Address [Balbinot, Roberto] Univ Bologna, Dipartimento Fis, Via Irnerio 46, I-40126 Bologna, Italy, Email: roberto.balbinot@unibo.it;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001130983900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5858  
Permanent link to this record
 

 
Author Mantovani Sarti, V.; Vento, V. url  doi
openurl 
  Title (down) The half-skyrmion phase in a chiral-quark model Type Journal Article
  Year 2014 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 728 Issue Pages 323-327  
  Keywords  
  Abstract The Chiral Dilaton Model, where baryons arise as non-topological solitons built from the interaction of quarks and chiral mesons, shows in the high density low temperature regime a two phase scenario in the nuclear matter phase diagram. Dense soliton matter described by the Wigner-Seitz approximation generates a periodic potential in terms of the sigma and pion fields that leads to the formation of a band structure. The analysis up to three times nuclear matter density shows that soliton matter undergoes two separate phase transitions: a delocalization of the baryon number density leading to B = 1/2 structures, as in skyrmion matter, at moderate densities, and quark deconfinement at larger densities. This description fits well into the so-called quarkyonic phase where, before deconfinement, nuclear matter should undergo structural changes involving the restoration of fundamental symmetries of QCD.  
  Address [Sarti, Valentina Mantovani] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000330556000053 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1707  
Permanent link to this record
 

 
Author HADES Collaboration (Lapidus, K. et al); Diaz, J.; Gil, A. doi  openurl
  Title (down) The HADES-at-FAIR project Type Journal Article
  Year 2012 Publication Physics of Atomic Nuclei Abbreviated Journal Phys. Atom. Nuclei  
  Volume 75 Issue 5 Pages 589-593  
  Keywords  
  Abstract After the completion of the experimental program at SIS18 the HADES setup will migrate to FAIR, where it will deliver high-quality data for heavy-ion collisions in an unexplored energy range of up to 8 A GeV. In this contribution, we briefly present the physics case, relevant detector characteristics and discuss the recently completed upgrade of HADES.  
  Address [Lapidus, K.; Chen, J. C.; Epple, E.; Fabbietti, L.; Lalik, R.; Muenzer, R.; Schmah, A.; Siebenson, J.] Excellence Cluster Origin & Struct Universe, Garching, Germany, Email: kirill.lapidus@ph.tum.de  
  Corporate Author Thesis  
  Publisher Maik Nauka/Interperiodica/Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-7788 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000304621800011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1046  
Permanent link to this record
 

 
Author Aguilar, A.C.; Binosi, D.; Papavassiliou, J. url  doi
openurl 
  Title (down) The gluon mass generation mechanism: A concise primer Type Journal Article
  Year 2016 Publication Frontiers of Physics Abbreviated Journal Front. Phys.  
  Volume 11 Issue 2 Pages 111203 - 18pp  
  Keywords nonperturbative physics; Schwinger-Dyson equations; dynamical mass generation  
  Abstract We present a pedagogical overview of the nonperturbative mechanism that endows gluons with a dynamical mass. This analysis is performed based on pure Yang-Mills theories in the Landau gauge, within the theoretical framework that emerges from the combination of the pinch technique with the background field method. In particular, we concentrate on the Schwinger-Dyson equation satisfied by the gluon propagator and examine the necessary conditions for obtaining finite solutions within the infrared region. The role of seagull diagrams receives particular attention, as do the identities that enforce the cancellation of all potential quadratic divergences. We stress the necessity of introducing nonperturbative massless poles in the fully dressed vertices of the theory in order to trigger the Schwinger mechanism, and explain in detail the instrumental role of these poles in maintaining the Becchi-Rouet-Stora-Tyutin symmetry at every step of the mass-generating procedure. The dynamical equation governing the evolution of the gluon mass is derived, and its solutions are determined numerically following implementation of a set of simplifying assumptions. The obtained mass function is positive definite, and exhibits a power law running that is consistent with general arguments based on the operator product expansion in the ultraviolet region. A possible connection between confinement and the presence of an inflection point in the gluon propagator is briefly discussed.  
  Address [Aguilar, A. C.] Univ Campinas UNICAMP, Gleb Wataghin Inst Phys, BR-13083859 Campinas, SP, Brazil, Email: Joannis.Papavassiliou@uv.es  
  Corporate Author Thesis  
  Publisher Higher Education Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-0462 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000387550300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2859  
Permanent link to this record
 

 
Author Fanchiotti, H.; Garcia Canal, C.A.; Mayosky, M.; Veiga, A.; Vento, V. doi  openurl
  Title (down) The Geometric Phase in Classical Systems and in the Equivalent Quantum Hermitian and Non-Hermitian PT-Symmetric Systems Type Journal Article
  Year 2023 Publication Brazilian Journal of Physics Abbreviated Journal Braz. J. Phys.  
  Volume 53 Issue 6 Pages 143 - 11pp  
  Keywords Geometrical phases; Decomplexification; Resonat circuit; Gyrator  
  Abstract The decomplexification procedure allows one to show mathematically (stricto sensu) the equivalence (isomorphism) between the quantum dynamics of a system with a finite number of basis states and a classical dynamics system. This unique way of connecting different dynamics was used in the past to analyze the relationship between the well-known geometric phase present in the quantum evolution discovered by Berry and its generalizations, with their analogs, the Hannay phases, in the classical domain. In here, this analysis is carried out for several quantum hermitian and non-hermitian PT-symmetric Hamiltonians and compared with the Hannay phase analysis in their classical isomorphic equivalent systems. As the equivalence ends in the classical domain with oscillator dynamics, we exploit the analogy to propose resonant electric circuits coupled with a gyrator, to reproduce the geometric phase coming from the theoretical solutions, in simulated laboratory experiments.  
  Address [Fanchiotti, H.; Canal, C. A. Garcia] Univ Nacl La Plata, FLP CONICET, RA-1900 La Plata, Argentina, Email: vicente.vento@uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0103-9733 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001058597300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5627  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva