toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Afonso, V.I.; Olmo, G.J.; Orazi, E.; Rubiera-Garcia, D. url  doi
openurl 
  Title (down) New scalar compact objects in Ricci-based gravity theories Type Journal Article
  Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 12 Issue 12 Pages 044 - 20pp  
  Keywords modified gravity; gravity; GR black holes; Wormholes  
  Abstract Taking advantage of a previously developed method, which allows to map solutions of General Relativity into a broad family of theories of gravity based on the Ricci tensor (Ricci-based gravities), we find new exact analytical scalar field solutions by mapping the free-field static, spherically symmetric solution of General Relativity (GR) into quadratic f(R) gravity and the Eddington-inspired Born-Infeld gravity. The obtained solutions have some distinctive feature below the would-be Schwarzschild radius of a configuration with the same mass, though in this case no horizon is present. The compact objects found include wormholes, compact balls, shells of energy with no interior, and a new kind of object which acts as a kind of wormhole membrane. The latter object has Euclidean topology but connects antipodal points of its surface by transferring particles and null rays across its interior in virtually zero affine time. We point out the relevance of these results regarding the existence of compact scalar field objects beyond General Relativity that may effectively act as black hole mimickers.  
  Address [Afonso, Victor I.] Univ Fed Campina Grande, Unidade Acad Fis, BR-58429900 Campina Grande, PB, Brazil, Email: viafonso@df.ufcg.edu.br;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000507261900041 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4252  
Permanent link to this record
 

 
Author Barenboim, G.; Ternes, C.A.; Tortola, M. url  doi
openurl 
  Title (down) New physics vs new paradigms: distinguishing CPT violation from NSI Type Journal Article
  Year 2019 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 79 Issue 5 Pages 390 - 7pp  
  Keywords  
  Abstract Our way of describing Nature is based on local relativistic quantum field theories, and then CPT symmetry, a natural consequence of Lorentz invariance, locality and hermiticity of the Hamiltonian, is one of the few if not the only prediction that all of them share. Therefore, testing CPT invariance does not test a particular model but the whole paradigm. Current and future long baseline experiments will assess the status of CPT in the neutrino sector at an unprecedented level and thus its distinction from similar experimental signatures arising from non-standard interactions is imperative. Whether the whole paradigm is at stake or just the standard model of neutrinos crucially depends on that.  
  Address [Barenboim, G.] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000467183800003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4005  
Permanent link to this record
 

 
Author Xu, S.S.; Cui, Z.F.; Chang, L.; Papavassiliou, J.; Roberts, C.D.; Zong, H.S. url  doi
openurl 
  Title (down) New perspective on hybrid mesons Type Journal Article
  Year 2019 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A  
  Volume 55 Issue 7 Pages 113 - 6pp  
  Keywords  
  Abstract We introduce a novel approach to the hybrid-meson (valence-gluon+quark+antiquark) bound-state problem in relativistic quantum field theory. Exploiting the existence of strong two-body correlations in the gluon-quark, q(g) = [gq], and gluon-antiquark, (q) over bar (g) = [g (q) over bar] channels, we argue that a sound description of hybrids can be obtained by solving a coupled pair of effectively two-body equations; and, consequently, that hybrids may be viewed as highly correlated q(g)(q) over bar <-> q (q) over bar (g) bound states. Analogies may be drawn between this picture of hybrid structure and that of baryons, in which diquark (quark+quark) correlations play a key role. The potential of this formulation is illustrated by calculating the spectrum of light-quark isovector hybrid mesons.  
  Address [Xu, Shu-Sheng] Nanjing Univ Posts & Telecommun, Sch Sci, Nanjing 210023, Jiangsu, Peoples R China, Email: leichang@nankai.edu.cn;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6001 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000476540800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4088  
Permanent link to this record
 

 
Author Watanabe, H. et al; Montaner-Piza, A. doi  openurl
  Title (down) New isomers in (125)Pd(79)( )and Pd-127(81): Competing proton and neutron excitations in neutron-rich palladium nuclides towards the N=82 shell closure Type Journal Article
  Year 2019 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 792 Issue Pages 263-268  
  Keywords  
  Abstract The neutron-rich isotopes of palladium have attracted considerable interest in terms of the evolution of the N = 82 neutron shell closure and its influence on the r-process nucleosynthesis. In this Letter, we present the first spectroscopic information on the excited states in Pd-125(79) and Pd-127(81) studied using the EURICA gamma-ray spectrometer, following production via in-flight fission of a high-intensity U-238 beam at the RIBF facility. New isomeric states with half-lives of 144(4) ns and 39(6) μs have been assigned spins and parities of (23/2(+)) and (19/2(+)) in Pd-125 and Pd-127, respectively. The observed level properties are compared to a shell-model calculation, suggesting the competition between proton excitations and neutron excitations in the proton-hole and neutron-hole systems in the vicinity of the doubly magic nucleus Sn-132.  
  Address [Watanabe, H.] Beihang Univ, Sch Phys & Nucl Energy Engn, Beijing 100191, Peoples R China, Email: hiroshi@ribf.riken.jp  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000466802100040 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3998  
Permanent link to this record
 

 
Author Wang, Y.F.; Yao, D.L.; Zheng, H.Q. url  doi
openurl 
  Title (down) New insights on low energy pi N scattering amplitudes: comprehensive analyses at O (p(3)) level Type Journal Article
  Year 2019 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C  
  Volume 43 Issue 6 Pages 064110 - 22pp  
  Keywords dispersion relations; pion-nucleon scattering; chiral perturbation theory  
  Abstract A production representation of partial-wave S matrix is utilized to construct low-energy elastic pion-nucleon scattering amplitudes from cuts and poles on complex Riemann sheets. Among them, the contribution of left-hand cuts is estimated using the O (p(3)) results obtained in covariant baryon chiral perturbation theory within the extendedon-nass-shell scheme. By fitting to data on partial-wave phase shifts, it is indicated that the existences of hidden poles in S-11 and P-11 channels, as conjectured in our previous paper [Eur. Phys. J. C, 78(7): 543 (2018)], are firmly established. Specifically, the pole mass of the S-11 hidden resonance is determined to be (895 +/- 81)-(164 +/- 23)i MeV, whereas, the virtual pole in the P-11 channel locates at (966 +/- 18) MeV. It is found that analyses at the O (p(3)) level improves significantly the fit quality, comparing with the previous O (p(2)) one. Quantitative studies with cautious physical discussions are also conducted for the other S- and P-wave channels.  
  Address [Wang, Yu-Fei; Zheng, Han-Qing] Peking Univ, Dept Phys, Beijing 100871, Peoples R China, Email: yaodeliang@pku.edu.cn  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1674-1137 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000468501700013 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4020  
Permanent link to this record
 

 
Author Soderstrom, P.A. et al; Agramunt, J.; Egea, J.; Gadea, A.; Huyuk, T. doi  openurl
  Title (down) Neutron detection and gamma-ray suppression using artificial neural networks with the liquid scintillators BC-501A and BC-537 Type Journal Article
  Year 2019 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 916 Issue Pages 238-245  
  Keywords BC-501A; BC-537; Digital pulse-shape discrimination; Fast-neutron detection; Liquid scintillator; Neural networks  
  Abstract In this work we present a comparison between the two liquid scintillators BC-501A and BC-537 in terms of their performance regarding the pulse-shape discrimination between neutrons and gamma rays. Special emphasis is put on the application of artificial neural networks. The results show a systematically higher gamma-ray rejection ratio for BC-501A compared to BC-537 applying the commonly used charge comparison method. Using the artificial neural network approach the discrimination quality was improved to more than 95% rejection efficiency of gamma rays over the energy range 150 to 1000 keV for both BC-501A and BC-537. However, due to the larger light output of BC-501A compared to BC-537, neutrons could be identified in BC-501A using artificial neural networks down to a recoil proton energy of 800 keV compared to a recoil deuteron energy of 1200 keV for BC-537. We conclude that using artificial neural networks it is possible to obtain the same gamma-ray rejection quality from both BC-501A and BC-537 for neutrons above a low-energy threshold. This threshold is, however, lower for BC-501A, which is important for nuclear structure spectroscopy experiments of rare reaction channels where low-energy interactions dominates.  
  Address [Soderstrom, P-A] ELI NP, Bucharest 077125, Romania, Email: par.anders@eli-np.ro  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000455016800033 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3869  
Permanent link to this record
 

 
Author Cepedello, R.; Deppisch, F.F.; Gonzalez, L.; Hati, C.; Hirsch, M. url  doi
openurl 
  Title (down) Neutrinoless Double-Beta Decay with Nonstandard Majoron Emission Type Journal Article
  Year 2019 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 122 Issue 18 Pages 181801 - 6pp  
  Keywords  
  Abstract We present a novel mode of neutrinoless double-beta decay with emission of a light Majoron-like scalar particle phi. We assume it couples via an effective seven-dimensional operator with a (V + A) lepton current and (V +/- A) quark currents leading to a long-range contribution that is unsuppressed by the light neutrino mass. We calculate the total double-beta decay rate and determine the fully differential shape for this mode. We find that future double-beta decay searches are sensitive to scales of the order Lambda(NP) approximate to 1 TeV for the effective operator and a light scalar m(phi) < 0.2 MeV, based on ordinary double-beta decay Majoron searches. The angular and energy distributions can deviate considerably from that of two-neutrino double-beta decay, which is the main background. We point out possible ultraviolet completions where such an effective operator can emerge.  
  Address [Cepedello, Ricardo; Hirsch, Martin] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Edificio Inst Paterna,Apartado 22085, E-46071 Valencia, Spain, Email: ricepe@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000467042800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4002  
Permanent link to this record
 

 
Author Fileviez Perez, P.; Murgui, C.; Plascencia, A.D. url  doi
openurl 
  Title (down) Neutrino-dark matter connections in gauge theories Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 100 Issue 3 Pages 035041 - 14pp  
  Keywords  
  Abstract We discuss the connection between the origin of neutrino masses and the properties of dark matter candidates in the context of gauge extensions of the Standard Model. We investigate minimal gauge theories for neutrino masses where the neutrinos arc predicted to be Dirac or Majorana fermions. We find that the upper bound on the effective number of relativistic species provides a strong constraint in the scenarios with Dirac neutrinos. In the context of theories where the lepton number is a local gauge symmetry spontaneously broken at the low scale, the existence of dark matter is predicted from the condition of anomaly cancellation. Applying the cosmological bound on the dark matter relic density, we find an upper bound on the symmetry breaking scale in the multi-TeV region. These results imply that we could test simple gauge theories for neutrino masses at current or future experiments.  
  Address [Perez, Pavel Fileviez; Plascencia, Alexis D.] Case Western Reserve Univ, Phys Dept, Rockefeller Bldg,2076 Adelbert Rd, Cleveland, OH 44106 USA, Email: pxf112@case.edu;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000483349300005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4129  
Permanent link to this record
 

 
Author Donini, A.; Palomares-Ruiz, S.; Salvado, J. url  doi
openurl 
  Title (down) Neutrino tomography of Earth Type Journal Article
  Year 2019 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 15 Issue 1 Pages 37-40  
  Keywords  
  Abstract Cosmic-ray interactions with the atmosphere produce a flux of neutrinos in all directions with energies extending above the TeV scale(1). The Earth is not a fully transparent medium for neutrinos with energies above a few TeV, as the neutrinonucleon cross-section is large enough to make the absorption probability non-negligible(2). Since absorption depends on energy and distance travelled, studying the distribution of the TeV atmospheric neutrinos passing through the Earth offers an opportunity to infer its density profiles(3-7). This has never been done, however, due to the lack of relevant data. Here we perform a neutrino-based tomography of the Earth using actual data-one-year of through-going muon atmospheric neutrino data collected by the IceCube telescope(8). Using only weak interactions, in a way that is completely independent of gravitational measurements, we are able to determine the mass of the Earth and its core, its moment of inertia, and to establish that the core is denser than the mantle. Our results demonstrate the feasibility of this approach to study the Earth's internal structure, which is complementary to traditional geophysics methods. Neutrino tomography could become more competitive as soon as more statistics is available, provided that the sources of systematic uncertainties are fully under control.  
  Address [Donini, Andrea; Palomares-Ruiz, Sergio; Salvado, Jordi] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Valencia, Spain, Email: sergiopr@ific.uv.es  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1745-2473 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000454733100017 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3863  
Permanent link to this record
 

 
Author Carcamo Hernandez, A.E.; Kovalenko, S.; Valle, J.W.F.; Vaquera-Araujo, C.A. url  doi
openurl 
  Title (down) Neutrino predictions from a left-right symmetric flavored extension of the standard model Type Journal Article
  Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages 065 - 24pp  
  Keywords Beyond Standard Model; Discrete Symmetries; Neutrino Physics; Quark Masses and SM Parameters  
  Abstract We propose a left-right symmetric electroweak extension of the Standard Model based on the Delta (27) family symmetry. The masses of all electrically charged Standard Model fermions lighter than the top quark are induced by a Universal Seesaw mechanism mediated by exotic fermions. The top quark is the only Standard Model fermion to get mass directly from a tree level renormalizable Yukawa interaction, while neutrinos are unique in that they get calculable radiative masses through a low-scale seesaw mechanism. The scheme has generalized μ- tau symmetry and leads to a restricted range of neutrino oscillations parameters, with a nonzero neutrinoless double beta decay amplitude lying at the upper ranges generically associated to normal and inverted neutrino mass ordering.  
  Address [Carcamo Hernandez, A. E.; Kovalenko, Sergey] Univ Tecn Federico Santa Maria, Casilla 110-5, Valparaiso, Chile, Email: antonio.carcamo@usm.cl;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000459168900003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3917  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva