toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gomez-Cadenas, J.J.; Martin-Albo, J.; Sorel, M.; Ferrario, P.; Monrabal, F.; Muñoz, J.; Novella, P.; Poves, A. url  doi
openurl 
  Title (down) Sense and sensitivity of double beta decay experiments Type Journal Article
  Year 2011 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 06 Issue 6 Pages 007 - 30pp  
  Keywords double beta decay; neutrino experiments; neutrino properties  
  Abstract The search for neutrinoless double beta decay is a very active field in which the number of proposals for next-generation experiments has proliferated. In this paper we attempt to address both the sense and the sensitivity of such proposals. Sensitivity comes first, by means of proposing a simple and unambiguous statistical recipe to derive the sensitivity to a putative Majorana neutrino mass, m(beta beta). In order to make sense of how the different experimental approaches compare, we apply this recipe to a selection of proposals, comparing the resulting sensitivities. We also propose a “physics-motivated range” (PMR) of the nuclear matrix elements as a unifying criterium between the different nuclear models. The expected performance of the proposals is parametrized in terms of only four numbers: energy resolution, background rate (per unit time, isotope mass and energy), detection efficiency, and beta beta isotope mass. For each proposal, both a reference and an optimistic scenario for the experimental performance are studied. In the reference scenario we find that all the proposals will be able to partially explore the degenerate spectrum, without fully covering it, although four of them (KamLAND-Zen, CUORE, NEXT and EXO) will approach the 50 meV boundary. In the optimistic scenario, we find that CUORE and the xenon-based proposals (KamLAND-Zen, EXO and NEXT) will explore a significant fraction of the inverse hierarchy, with NEXT covering it almost fully. For the long term future, we argue that Xe-136-based experiments may provide the best case for a 1-ton scale experiment, given the potentially very low backgrounds achievable and the expected scalability to large isotope masses.  
  Address [Gomez-Cadenas, J. J.; Martin-Albo, J.; Sorel, M.; Ferrario, P.; Monrabal, F.; Munoz, J.] CSIC, IFIC, Valencia 46071, Spain, Email: gomez@mail.cern.ch  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000292332400007 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 675  
Permanent link to this record
 

 
Author NEXT Collaboration (Henriques, C.A.O. et al); Gomez-Cadenas, J.J.; Alvarez, V.; Benlloch-Rodriguez, J.; Botas, A.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Ferrario, P.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Martin-Albo, J.; Martinez, A.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Perez, J.; Querol, M.; Renner, J.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Torrent, J.; Yahlali, N. url  doi
openurl 
  Title (down) Secondary scintillation yield of xenon with sub-percent levels of CO2 additive for rare-event detection Type Journal Article
  Year 2017 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 773 Issue Pages 663-671  
  Keywords Double beta decay; Neutrino; Rare event detection; Electroluminescence; Secondary scintillation; Xenon  
  Abstract Xe-CO2 mixtures are important alternatives to pure xenon in Time Projection Chambers (TPC) based on secondary scintillation (electroluminescence) signal amplification with applications in the important field of rare event detection such as directional dark matter, double electron capture and double beta decay detection. The addition of CO2 to pure xenon at the level of 0.05-0.1% can reduce significantly the scale of electron diffusion from 10 mm/root m to 2.5 mm/root m, with high impact on the discrimination of the events through pattern recognition of the topology of primary ionization trails. We have measured the electroluminescence (EL) yield of Xe-CO2 mixtures, with sub-percent CO2 concentrations. We demonstrate that the EL production is still high in these mixtures, 70% and 35% relative to that produced in pure xenon, for CO2 concentrations around 0.05% and 0.1%, respectively. The contribution of the statistical fluctuations in EL production to the energy resolution increases with increasing CO2 concentration, being smaller than the contribution of the Fano factor for concentrations below 0.1% CO2.  
  Address [Henriques, C. A. O.; Freitas, E. D. C.; Mano, R. D. P.; Jorge, M. R.; Fernandes, L. M. P.; Monteiro, C. M. B.; dos Santos, J. M. F.] Univ Coimbra, Phys Dept, LIBPhys, Rua Larga, P-3004516 Coimbra, Portugal, Email: cristina@gian.fis.uc.pt  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000413294200099 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3342  
Permanent link to this record
 

 
Author Freitas, E.D.C.; Monteiro, C.M.B.; Ball, M.; Gomez-Cadenas, J.J.; Lopes, J.A.M.; Lux, T.; Sanchez, F.; dos Santos, J.M.F. doi  openurl
  Title (down) Secondary scintillation yield in high-pressure xenon gas for neutrinoless double beta decay (0 nu beta beta) search Type Journal Article
  Year 2010 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 684 Issue 4-5 Pages 205-210  
  Keywords Neutrino; Neutrinoless double-beta decay; Secondary scintillation; Xenon; High-pressure  
  Abstract The search for neutrinoless double beta decay (0 nu beta beta) is an important topic in contemporary physics with many active experiments. New projects are planning to use high-pressure xenon gas as both source and detection medium. The secondary scintillation processes available in noble gases permit large amplification with negligible statistical fluctuations, offering the prospect of energy resolution approaching the Fano factor limit. This Letter reports results for xenon secondary scintillation yield, at room temperature, as a function of electric field in the gas scintillation gap for pressures ranging from 2 to 10 bar. A Large Area Avalanche Photodiode (LAAPD) collected the VUV secondary scintillation produced in the gas. X-rays directly absorbed in the LAAPD are used as a reference for determining the number of charge carriers produced by the scintillation pulse and, hence, the number of photons impinging the LAAPD. The number of photons produced per drifting electron and per kilovolt, the so-called scintillation amplification parameter, displays a small increase with pressure, ranging from 141 +/- 6 at 2 bar to 170 +/- 10 at 8 bar. In our setup, this Parameter does not increase above 8 bar due to nonnegligible electron attachment. The results are in good agreement with those presented in the literature in the 1 to 3 bar range. The increase of the scintillation amplification parameter with pressure for high gas densities has been also observed in former work at cryogenic temperatures.  
  Address [Freitas, E. D. C.; Monteiro, C. M. B.; Lopes, J. A. M.; dos Santos, J. M. F.] Univ Coimbra, GIAN CI, Dept Fis, P-3004516 Coimbra, Portugal, Email: jmf@gian.fis.uc.pt  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000275009600006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 487  
Permanent link to this record
 

 
Author Melcon, A.A.; Cuendis, S.A.; Cogollos, C.; Diaz-Morcillo, A.; Dobrich, B.; Gallego, J.D.; Barcelo, J.M.G.; Gimeno, B.; Golm, J.; Irastorza, I.G.; Lozano-Guerrero, A.J.; Malbrunot, C.; Millar, A.; Navarro, P.; Garay, C.P.; Redondo, J.; Wuensch, W. url  doi
openurl 
  Title (down) Scalable haloscopes for axion dark matter detection in the 30 μeV range with RADES Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 084 - 28pp  
  Keywords Dark matter; Dark Matter and Double Beta Decay (experiments)  
  Abstract RADES (Relic Axion Detector Exploratory Setup) is a project with the goal of directly searching for axion dark matter above the 30 μeV scale employing custom-made microwave filters in magnetic dipole fields. Currently RADES is taking data at the LHC dipole of the CAST experiment. In the long term, the RADES cavities are envisioned to take data in the BabyIAXO magnet. In this article we report on the modelling, building and characterisation of an optimised microwave-filter design with alternating irises that exploits maximal coupling to axions while being scalable in length without suffering from mode-mixing. We develop the mathematical formalism and theoretical study which justifies the performance of the chosen design. We also point towards the applicability of this formalism to optimise the MADMAX dielectric haloscopes.  
  Address [Alvarez Melcon, A.; Diaz-Morcillo, A.; Garcia Barcelo, J. M.; Lozano-Guerrero, A. J.; Navarro, P.] Tech Univ Cartagena, Dept Informat & Commun Technol, Murcia 30203, Spain, Email: alejandro.alvarez@upct.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000553158400002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4478  
Permanent link to this record
 

 
Author SuperNEMO Collaboration (Argyriades, J. et al); Carcel, S.; Diaz, J.; Monrabal, F.; Serra, L.; Yahlali, N. url  doi
openurl 
  Title (down) Results of the BiPo-1 prototype for radiopurity measurements for the SuperNEMO double beta decay source foils Type Journal Article
  Year 2010 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 622 Issue 1 Pages 120-128  
  Keywords Double beta decay; NEMO-3; SuperNEMO; BiPo; Majorana neutrino; Radiopurity  
  Abstract The development of BiPo detectors is dedicated to the measurement of extremely high radiopurity in (TI)-T-208 and Bi-214 for the SuperNEMO double beta decay source foils. A modular prototype, called BiPo-1, with 0.8 m(2) of sensitive surface area, has been running in the Modane Underground Laboratory since February, 2008. The goal of BiPo-1 is to measure the different components of the background and in particular the surface radiopurity of the plastic scintillators that make up the detector. The first phase of data collection has been dedicated to the measurement of the radiopurity in (TI)-T-208. After more than one year of background measurement, a surface activity of the scintillators of A((TI)-T-208) = 1.5 μBq/m(2) is reported here. Given this level of background, a larger BiPo detector having 12 m(2) of active surface area, is able to qualify the radiopurity of the SuperNEMO selenium double beta decay foils with the required sensitivity of A((TI)-T-208) <2 μBq/kg (90% CL.) with a six month measurement.  
  Address [Argyriades, J.; Augier, C.; Bongrand, M.; Bourgeois, C.; Breton, D.; Briere, M.; Broudin-Bay, G.; Garrido, X.; Jenzer, S.; Jullian, S.; Sarazin, X.; Simard, L.; Szklarz, G.] Univ Paris 11, LAL, CNRS, IN2P3, F-91405 Orsay, France, Email: sarazin@lal.in2p3.fr  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000282530300016 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 364  
Permanent link to this record
 

 
Author Herrero, V.; Toledo, J.; Catala, J.M.; Esteve, R.; Gil, A.; Lorca, D.; Monzo, J.M.; Sanchis, F.; Verdugo, A. doi  openurl
  Title (down) Readout electronics for the SiPM tracking plane in the NEXT-1 prototype Type Journal Article
  Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 695 Issue Pages 229-232  
  Keywords Neutrino less double beta decay; Xenon gas TPC; SiPM readout; Front-end electronics; Gated integrator  
  Abstract NEXT is a new experiment to search for neutrinoless double beta decay using a 100 kg radio-pure high-pressure gaseous xenon TPC with electroluminescence readout. A large-scale prototype with a SiPM tracking plane has been built. The primary electron paths can be reconstructed from time-resolved measurements of the light that arrives to the SiPM plane. Our approach is to measure how many photons have reached each SiPM sensor each microsecond with a gated integrator. We have designed and tested a 16-channel front-end board that includes the analog paths and a digital section. Each analog path consists of three different stages: a transimpedance amplifier, a gated integrator and an offset and gain control stage. Measurements show good linearity and the ability to detect single photoelectrons.  
  Address [Herrero, V.; Toledo, J.; Catala, J. M.; Esteve, R.; Monzo, J. M.; Sanchis, F.] Univ Politecn Valencia, CIEMAT, Ctr Mixto, I3M, Valencia 46022, Spain, Email: jtoledo@eln.upv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000311469900049 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1237  
Permanent link to this record
 

 
Author NEXT Collaboration (Cebrian, S. et al); Alvarez, V.; Carcel, S.; Cervera-Villanueva, A.; Diaz, J.; Ferrario, P.; Gomez-Cadenas, J.J.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Monserrate, M.; Muñoz Vidal, J.; Nebot-Guinot, M.; Querol, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N. url  doi
openurl 
  Title (down) Radiopurity assessment of the tracking readout for the NEXT double beta decay experiment Type Journal Article
  Year 2015 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 10 Issue Pages P05006 - 16pp  
  Keywords Radiation calculations; Time projection Chambers (TPC); Double-beta decay detectors; Particle tracking detectors (Gaseous detectors)  
  Abstract The “Neutrino Experiment with a Xenon Time-Projection Chamber” (NEXT) is intended to investigate the neutrinoless double beta decay of Xe-136, which requires a severe suppression of potential backgrounds; therefore, an extensive screening and selection process is underway to control the radiopurity levels of the materials to be used in the experimental set-up of NEXT. The detector design combines the measurement of the topological signature of the event for background discrimination with the energy resolution optimization. Separate energy and tracking readout planes are based on different sensors: photomultiplier tubes for calorimetry and silicon multi-pixel photon counters for tracking. The design of a radiopure tracking plane, in direct contact with the gas detector medium, was specially challenging since the needed components like printed circuit boards, connectors, sensors or capacitors have typically, according to available information in databases and in the literature, activities too large for experiments requiring ultra-low background conditions. Here, the radiopurity assessment of tracking readout components based on gamma-ray spectroscopy using ultra-low background germanium detectors at the Laboratorio Subterraneo de Canfranc (Spain) is described. According to the obtained results, radiopure enough printed circuit boards made of kapton and copper, silicon photomultipliers and other required components, fulfilling the requirement of an overall background level in the region of interest of at most 8 x 10(-4) counts keV(-1) kg(-1) y(-1), have been identified.  
  Address [Cebrian, S.; Dafni, T.; Gonzalez-Diaz, D.; Herrera, D. C.; Irastorza, I. G.; Luzon, G.; Ortiz de Solorzano, A.; Villar, J. A.] Univ Zaragoza, Lab Fis Nucl & Astroparticulas, E-50009 Zaragoza, Spain, Email: scebrian@unizar.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000357993300038 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2305  
Permanent link to this record
 

 
Author NEXT Collaboration (Cebrian, S. et al); Perez, J.; Alvarez, V.; Benlloch-Rodriguez, J.; Botas, A.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Ferrario, P.; Gomez-Cadenas, J.J.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Martin-Albo, J.; Martinez, A.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Querol, M.; Renner, J.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Torrent, J.; Yahlali, N. url  doi
openurl 
  Title (down) Radiopurity assessment of the energy readout for the NEXT double beta decay experiment Type Journal Article
  Year 2017 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 12 Issue Pages T08003 - 20pp  
  Keywords Double-beta decay detectors; Gamma detectors (scintillators, CZT, HPG, HgI etc); Search for radioactive and fissile materials; Time projection chambers  
  Abstract The “Neutrino Experiment with a Xenon Time-Projection Chamber” (NEXT) experiment intends to investigate the neutrinoless double beta decay of Xe-136, and therefore requires a severe suppression of potential backgrounds. An extensive material screening and selection process was undertaken to quantify the radioactivity of the materials used in the experiment. Separate energy and tracking readout planes using different sensors allow us to combine the measurement of the topological signature of the event for background discrimination with the energy resolution optimization. The design of radiopure readout planes, in direct contact with the gas detector medium, was especially challenging since the required components typically have activities too large for experiments demanding ultra-low background conditions. After studying the tracking plane, here the radiopurity control of the energy plane is presented, mainly based on gamma-ray spectroscopy using ultra-low background germanium detectors at the Laboratorio Subterraneo de Canfranc (Spain). All the available units of the selected model of photomultiplier have been screened together with most of the components for the bases, enclosures and windows. According to these results for the activity of the relevant radioisotopes, the selected components of the energy plane would give a contribution to the overall background level in the region of interest of at most 2.4 x 10(-4) counts keV(-1) kg(-1) y(-1), satisfying the sensitivity requirements of the NEXT experiment.  
  Address [Cebrian, S.] Univ Zaragoza, Lab Fis Nucl Astroparticulas, Calle Pedro Cerbuna 12, Zaragoza, Spain, Email: scebrian@unizar.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000414160600003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3348  
Permanent link to this record
 

 
Author NEXT Collaboration (Novella, P. et al); Palmeiro, B.; Sorel, M.; Uson, A.; Alvarez, V; Benlloch-Rodriguez, J.M.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Herrero, P.; Kekic, M.; Lopez-March, N.; Martinez-Lema, G.; Muñoz Vidal, J.; Querol, M.; Renner, J.; Romo-Luque, C.; Yahlali, N. url  doi
openurl 
  Title (down) Radiogenic backgrounds in the NEXT double beta decay experiment Type Journal Article
  Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 051 - 26pp  
  Keywords Dark Matter and Double Beta Decay (experiments)  
  Abstract Natural radioactivity represents one of the main backgrounds in the search for neutrinoless double beta decay. Within the NEXT physics program, the radioactivity- induced backgrounds are measured with the NEXT-White detector. Data from 37.9 days of low-background operations at the Laboratorio Subterraneo de Canfranc with xenon depleted in Xe-136 are analyzed to derive a total background rate of (0.84 +/- 0.02) mHz above 1000 keV. The comparison of data samples with and without the use of the radon abatement system demonstrates that the contribution of airborne-Rn is negligible. A radiogenic background model is built upon the extensive radiopurity screening campaign conducted by the NEXT collaboration. A spectral fit to this model yields the specific contributions of Co-60, K-40, Bi-214 and Tl-208 to the total background rate, as well as their location in the detector volumes. The results are used to evaluate the impact of the radiogenic backgrounds in the double beta decay analyses, after the application of topological cuts that reduce the total rate to (0.25 +/- 0.01) mHz. Based on the best-fit background model, the NEXT-White median sensitivity to the two-neutrino double beta decay is found to be 3.5 sigma after 1 year of data taking. The background measurement in a Q(beta beta)+/- 100 keV energy window validates the best-fit background model also for the neutrinoless double beta decay search with NEXT-100. Only one event is found, while the model expectation is (0.75 +/- 0.12) events.  
  Address [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, 12 Phys Hall, Ames, IA 50011 USA, Email: pau.novella@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000491469000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4183  
Permanent link to this record
 

 
Author NEXT Collaboration (Alvarez, V. et al); Carcel, S.; Cervera-Villanueva, A.; Diaz, J.; Ferrario, P.; Gil, A.; Gomez-Cadenas, J.J.; Laing, A.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Muñoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N. url  doi
openurl 
  Title (down) Operation and first results of the NEXT-DEMO prototype using a silicon photomultiplier tracking array Type Journal Article
  Year 2013 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 8 Issue Pages P09011 - 20pp  
  Keywords Pattern recognition, cluster finding, calibration and fitting methods; Double-beta decay detectors; Particle tracking detectors (Gaseous detectors); Time projection chambers  
  Abstract NEXT-DEMO is a high-pressure xenon gas TPC which acts as a technological test-bed and demonstrator for the NEXT-100 neutrinoless double beta decay experiment. In its current configuration the apparatus fully implements the NEXT-100 design concept. This is an asymmetric TPC, with an energy plane made of photomultipliers and a tracking plane made of silicon photomultipliers (SiPM) coated with TPB. The detector in this new configuration has been used to reconstruct the characteristic signature of electrons in dense gas, demonstrating the ability to identify the MIP and “blob” regions. Moreover, the SiPM tracking plane allows for the definition of a large fiducial region in which an excellent energy resolution of 1.82% FWHM at 511 keV has been measured (a value which extrapolates to 0.83% at the xenon Q(beta beta)).  
  Address [Alvarez, V.; Carcel, S.; Cervera, A.; Diaz, J.; Ferrario, P.; Gil, A.; Gomez-Cadenas, J. J.; Laing, A.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Monserrate, M.; Munoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.] CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain, Email: andrew.laing@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000326680200025 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1653  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva