toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Dias, J.M.; Yu, Q.X.; Liang, W.H.; Sun, Z.F.; Xie, J.J.; Oset, E. url  doi
openurl 
  Title (down) Xi(bb) and Omega(bbb) molecular states Type Journal Article
  Year 2020 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C  
  Volume 44 Issue 6 Pages 064101 - 8pp  
  Keywords doubly-heavy baryons; strong interaction; molecular state  
  Abstract Using the vector exchange interaction in the local hidden gauge approach, which in the light quark sector generates the chiral Lagrangians and has produced realistic results for Omega(C), Xi(c), Xi(b) and the hidden charm pentaquark states, we study the meson-baryon interactions in the coupled channels that lead to the Xi(bb) and Omega(bbb) excited states of the molecular type. We obtain seven states of the Xi(bb) type with energies between and MeV, and one Omega(bbb) state at MeV.  
  Address [Dias, J. M.; Yu, Qi-Xin; Liang, Wei-Hong; Oset, E.] Guangxi Normal Univ, Dept Phys, Guilin 541004, Peoples R China, Email: isengardjor@gmail.com;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1674-1137 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000541533100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4432  
Permanent link to this record
 

 
Author Garcilazo, H.; Valcarce, A.; Vijande, J. url  doi
openurl 
  Title (down) Xi(-)t quasibound state instead of Lambda Lambda nn bound state Type Journal Article
  Year 2020 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C  
  Volume 44 Issue 2 Pages 024102 - 7pp  
  Keywords baryon-baryon interactions; few-body systems; Faddeev equations  
  Abstract The coupled Lambda Lambda nn – Xi-pnn system was studied to investigate whether the inclusion of channel coupling is able to bind the Lambda Lambda nn system. We use a separable potential three-body model of the coupled Lambda Lambda nn – Xi-pnn system and a variational four-body calculation with realistic interactions. Our results exclude the possibility of a bound state by a large margin. Instead, we found a Xi(-)t quasibound state above the Lambda Lambda nn threshold.  
  Address [Garcilazo, H.] Inst Politecn Nacl, Escuela Super Fis & Matemat, Edificio 9, Mexico City 07738, DF, Mexico, Email: humberto@esfm.ipn.mx;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1674-1137 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000509960900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4267  
Permanent link to this record
 

 
Author De Romeri, V.; Majumdar, A.; Papoulias, D.K.; Srivastava, R. url  doi
openurl 
  Title (down) XENONnT and LUX-ZEPLIN constraints on DSNB-boosted dark matter Type Journal Article
  Year 2024 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 028 - 34pp  
  Keywords dark matter detectors; dark matter simulations; supernova neutrinos; supernovas  
  Abstract We consider a scenario in which dark matter particles are accelerated to semirelativistic velocities through their scattering with the Diffuse Supernova Neutrino Background. Such a subdominant, but more energetic dark matter component can be then detected via its scattering on the electrons and nucleons inside direct detection experiments. This opens up the possibility to probe the sub -GeV mass range, a region of parameter space that is usually not accessible at such facilities. We analyze current data from the XENONnT and LUX-ZEPLIN experiments and we obtain novel constraints on the scattering cross sections of sub -GeV boosted dark matter with both nucleons and electrons. We also highlight the importance of carefully taking into account Earth's attenuation effects as well as the finite nuclear size into the analysis. By comparing our results to other existing constraints, we show that these effects lead to improved and more robust constraints.  
  Address [Romeri, Valentina De] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient UV C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: deromeri@ific.uv.es;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001195757300010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6043  
Permanent link to this record
 

 
Author Miranda, O.G.; Papoulias, D.K.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title (down) XENON1T signal from transition neutrino magnetic moments Type Journal Article
  Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 808 Issue Pages 135685 - 5pp  
  Keywords  
  Abstract The recent puzzling results of the XENONIT collaboration at few keV electronic recoils could be due to the scattering of solar neutrinos endowed with finite Majorana transition magnetic moments (TMMs). Within such general formalism, we find that the observed excess in the XENONIT data agrees well with this interpretation. The required TMM strengths lie within the limits set by current experiments, such as Borexino, specially when one takes into account a possible tritium contamination.  
  Address [Miranda, O. G.] Ctr Invest & Estudios Avanzados IPN, Dept Fis, Apartado Postal 14-740, Mexico City 07000, DF, Mexico, Email: omr@fis.cinvestav.mx;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000571769700059 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4541  
Permanent link to this record
 

 
Author Gonzalez-Iglesias, D.; Aksoy, A.; Esperante, D.; Gimeno, B.; Latina, A.; Boronat, M.; Blanch, C.; Fuster-Martinez, N.; Martinez-Reviriego, P.; Martin-Luna, P.; Fuster, J. doi  openurl
  Title (down) X-band RF photoinjector design for the CompactLight project Type Journal Article
  Year 2021 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 1014 Issue Pages 165709 - 10pp  
  Keywords Photoinjector; X-band; Electron sources; Free electron laser; Beam generation  
  Abstract RF photoinjectors have been under development for several decades to provide the high-brightness electron beams required for X-ray Free Electron Lasers. This paper proposes a photoinjector design that meets the Horizon 2020 CompactLight design study requirements. It consists of a 5.6-cell, X-band (12 GHz) RF gun, an emittance-compensating solenoid and two X-band traveling-wave structures that accelerate the beam out of the space-charge-dominated regime. The RF gun is intended to operate with a cathode gradient of 200 MV/m, and the TW structures at a gradient of 65 MV/m. The shape of the gun cavity cells was optimized to reduce the peak electric surface field. An assessment of the gun RF breakdown likelihood is presented as is a multipacting analysis for the gun coaxial coupler. RF pulse heating on the gun inner surfaces is also evaluated and beam dynamics simulations of the 100 MeV photoinjector are summarized.  
  Address [Gonzalez-Iglesias, D.; Esperante, D.; Gimeno, B.; Boronat, M.; Blanch, C.; Fuster-Martinez, N.; Martinez-Reviriego, P.; Martin-Luna, P.; Fuster, J.] Univ Valencia Consejo Super Invest Cient, Inst Fis Corpuscular IFIC, Calle Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: daniel.gonzalez-iglesias@uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000704382900005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4983  
Permanent link to this record
 

 
Author Bayar, M.; Feijoo, A.; Oset, E. url  doi
openurl 
  Title (down) X(3960) seen in Ds plus Ds- as the X(3930) state seen in D plus D Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 107 Issue 3 Pages 034007 - 5pp  
  Keywords  
  Abstract We perform a calculation of the interaction of the D over bar D, Ds over bar Ds coupled channels and find two bound states, one coupling to DD over bar and another one at higher energies coupling mostly to D+s D-s . We identify this latter state with the X0(3930) seen in the D+D- mass distribution in the B+ -D+D-K+ decay, and also show that it produces an enhancement of the D+s D-s mass distribution close to threshold which is compatible with the recent LHCb observation in the B+ -D+s D-s K+ decay which has been identified as a new state, X0(3960).  
  Address [Bayar, M.] Kocaeli Univ, Dept Phys, TR-41380 Izmit, Turkey, Email: melahat.bayar@kocaeli.edu.tr;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000977509900002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5517  
Permanent link to this record
 

 
Author Anzivino, G. et al; Gonzalez-Alonso, M.; Passemar, E.; Pich, A. url  doi
openurl 
  Title (down) Workshop summary: Kaons@CERN 2023 Type Journal Article
  Year 2024 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 84 Issue 4 Pages 377 - 34pp  
  Keywords  
  Abstract Kaon physics is at a turning point – while the rare-kaon experiments NA62 and KOTO are in full swing, the end of their lifetime is approaching and the future experimental landscape needs to be defined. With HIKE, KOTO-II and LHCb-Phase-II on the table and under scrutiny, it is a very good moment in time to take stock and contemplate about the opportunities these experiments and theoretical developments provide for particle physics in the coming decade and beyond. This paper provides a compact summary of talks and discussions from the Kaons@CERN 2023 workshop, held in September 2023 at CERN.  
  Address [Anzivino, G.] Univ Perugia, Dipartimento Fis & Geol, Via A Pascoli, I-06123 Perugia, Italy  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001201845600005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6117  
Permanent link to this record
 

 
Author Navarro, P.; Gimeno, B.; Alvarez Melcon, A.; Arguedas Cuendis, S.; Cogollos, C.; Diaz-Morcillo, A.; Gallego, J.D.; Garcia Barcelo, J.M.; Golm, J.; Irastorza, I.G.; Lozano Guerrero, A.J.; Garay, C.P. url  doi
openurl 
  Title (down) Wide-band full-wave electromagnetic modal analysis of the coupling between dark-matter axions and photons in microwave resonators Type Journal Article
  Year 2022 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe  
  Volume 36 Issue Pages 101001 - 14pp  
  Keywords Axion detection; Axion field; Axion-photon interaction; BI-RME 3D; Broad-band analysis; Dark matter; Full wave analysis; Haloscope; Microwave resonator; Modal technique  
  Abstract The electromagnetic coupling axion-photon in a microwave cavity is revisited with the Boundary Integral-Resonant Mode Expansion (BI-RME) 3D technique. Such full-wave modal technique has been applied for the rigorous analysis of the excitation of a microwave cavity with an axion field. In this scenario, the electromagnetic field generated by the axion-photon coupling can be assumed to be driven by equivalent electrical charge and current densities. These densities have been inserted in the general BI-RME 3D equations, which express the RF electromagnetic field existing within a cavity as an integral involving the Dyadic Green's functions of the cavity (under Coulomb gauge) as well as such densities. This method is able to take into account any arbitrary spatial and temporal variation of both magnitude and phase of the axion field. Next, we have obtained a simple network driven by the axion current source, which represents the coupling between the axion field and the resonant modes of the cavity. With this approach, it is possible to calculate the extracted and dissipated RF power as a function of frequency along a broad band and without Cauchy-Lorentz approximations, obtaining the spectrum of the electromagnetic field generated in the cavity, and dealing with modes relatively close to the axion resonant mode. Moreover, with this technique we have a complete knowledge of the signal extracted from the cavity, not only in magnitude but also in phase. This can be an interesting issue for future analysis where the axion phase is an important parameter.  
  Address [Navarro, P.; Melcon, A. alvarez; Diaz-Morcillo, A.; Barcelo, J. M. Garcia; Guerrero, A. J. Lozano] Tech Univ Cartagena, Dept Informat & Commun Technol, Cartagena 30203, Spain, Email: pablonm.ct.94@gmail.com;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000791333100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5218  
Permanent link to this record
 

 
Author Real, D.; Calvo, D.; Zornoza, J.D.; Manzaneda, M. doi  openurl
  Title (down) White Rabbit Expansion Board: Design, Architecture, and Signal Integrity Simulations Type Journal Article
  Year 2023 Publication Electronics Abbreviated Journal Electronics  
  Volume 12 Issue 16 Pages 3394 - 16pp  
  Keywords subnanosecond synchronization; White Rabbit; IEEE Std 1588-2019; virtual prototyping  
  Abstract The White Rabbit protocol allows synchronization and communication via an optical link in an integrated, modular, and scalable manner. It provides a solution to those applications that have very demanding requirements in terms of synchronization. Field-programmable gate arrays are used to implement the protocol; additionally, special hardware is needed to provide the necessary clock signals used by the dual-mixer time difference for precise phase measurement. In the present work, an expansion board that allows for White Rabbit functionality is presented. The expansion board contains the oscillators required by the White Rabbit protocol, one running at 125 MHz and another at 124.922 MHZ. The architecture of this board includes two oscillator systems for tests and comparison. One is based on VCOs and another on crystal oscillators running at the desired frequencies. In addition, it incorporates a temperature sensor, from where the medium access control address is extracted, an electrically erasable programmable read-only memory, a pulse-per-second output, and a USB UART to access the White Rabbit IP core at the field-programmable gate array. Finally, to ensure the quality of the layout design and guarantee the level of synchronization desired, the results of the power and signal integrity simulations are also presented.  
  Address [Real, Diego; Calvo, David; de Dios Zornoza, Juan; Manzaneda, Mario] Univ Valencia, IFIC Inst Fis Corpuscular, CSIC, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: real@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001056236300001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5628  
Permanent link to this record
 

 
Author Villanueva-Domingo, P.; Villaescusa-Navarro, F.; Genel, S.; Angles-Alcazar, D.; Hernquist, L.; Marinacci, F.; Spergel, D.N.; Vogelsberger, M.; Narayanan, D. url  doi
openurl 
  Title (down) Weighing the Milky Way and Andromeda galaxies with artificial intelligence Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 107 Issue 10 Pages 103003 - 8pp  
  Keywords  
  Abstract We present new constraints on the masses of the halos hosting the Milky Way and Andromeda galaxies derived using graph neural networks. Our models, trained on 2,000 state-of-the-art hydrodynamic simulations of the CAMELS project, only make use of the positions, velocities and stellar masses of the galaxies belonging to the halos, and are able to perform likelihood-free inference on halo masses while accounting for both cosmological and astrophysical uncertainties. Our constraints are in agreement with estimates from other traditional methods, within our derived posterior standard deviation.  
  Address [Villanueva-Domingo, Pablo; Narayanan, Desika] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, E-46980 Paterna, Spain, Email: pablo.villanueva.domingo@gmail.com;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000988340900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5539  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva