toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Baglio, J.; Campanario, F.; Glaus, S.; Muhlleitner, M.; Ronca, J.; Spira, M.; Streicher, J. url  doi
openurl 
  Title (up) Higgs-pair production via gluon fusion at hadron colliders: NLO QCD corrections Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 04 Issue 4 Pages 181-50pp  
  Keywords Higgs Physics; Perturbative QCD  
  Abstract Higgs-pair production via gluon fusion is the dominant production mechanism of Higgs-boson pairs at hadron colliders. In this work, we present details of our numerical determination of the full next-to-leading-order (NLO) QCD corrections to the leading top-quark loops. Since gluon fusion is a loop-induced process at leading order, the NLO calculation requires the calculation of massive two-loop diagrams with up to four different mass/energy scales involved. With the current methods, this can only be done numerically, if no approximations are used. We discuss the setup and details of our numerical integration. This will be followed by a phenomenological analysis of the NLO corrections and their impact on the total cross section and the invariant Higgs-pair mass distribution. The last part of our work will be devoted to the determination of the residual theoretical uncertainties with special emphasis on the uncertainties originating from the scheme and scale dependence of the (virtual) top mass. The impact of the trilinear Higgs-coupling variation on the total cross section will be discussed.  
  Address [Baglio, Julien] CERN, Theoret Phys Dept, CH-1211 Geneva 23, Switzerland, Email: julien.baglio@cern.ch;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000531394200002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4391  
Permanent link to this record
 

 
Author n_TOF Collaboration (Mastromarco, M. et al); Domingo-Pardo, C.; Tain, J.L. url  doi
openurl 
  Title (up) High accuracy, high resolution U-235(n,f) cross section from n_TOF (CERN) from 18 meV to 10 keV Type Journal Article
  Year 2022 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A  
  Volume 58 Issue 8 Pages 147 - 13pp  
  Keywords  
  Abstract The U-235(n,f) cross section was measured in a wide energy range (18 meV-170 keV) at the nTOF facility at CERN, relative to Li-6(n,t) and B-10(n,alpha) standard reactions, with high resolution and accuracy, with a setup based on a stack of six samples and six silicon detectors placed in the neutron beam. In this paper we report on the results in the region between 18 meV and 10 keV neutron energy. A resonance analysis has been performed up to 200 eV, with the code SAMMY. The resulting fission kernels are compared with the ones extracted on the basis of the resonance parameters of the most recent major evaluated data libraries. A comparison of the nTOF data with the evaluated cross sections is also performed from thermal to 10 keV neutron energy for the energy-averaged cross section in energy groups of suitably chosen width. A good agreement, within 0.5%, is found on average between the new results and the latest evaluated data files ENDF/B-VIII.0 and JEFF-3.3, as well as with respect to the broad group average fission cross section established in the framework of the standard working group of IAEA (the so-called reference file). However, some discrepancies, of up to 4%, are still present in some specific energy regions. The new dataset here presented, characterized by a unique combination of high resolution and accuracy, low background and wide energy range, can help to improve the evaluations from the Resolved Resonance Region up to 10 keV, also reducing the uncertainties that affect this region.  
  Address [Mastromarco, M.; Colonna, N.; Diacono, D.] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy, Email: amaducci@lns.infn.it  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6001 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000840312100002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5328  
Permanent link to this record
 

 
Author Monerris-Belda, O.; Cervera Marin, R.; Rodriguez Jodar, M.; Diaz-Caballero, E.; Alcaide Guillen, C.; Petit, J.; Boria, V.E.; Gimeno, B.; Raboso, D. doi  openurl
  Title (up) High Power RF Discharge Detection Technique Based on the In-Phase and Quadrature Signals Type Journal Article
  Year 2021 Publication IEEE Transactions on Microwave Theory and Techniques Abbreviated Journal IEEE Trans. Microw. Theory Tech.  
  Volume 69 Issue 12 Pages 5429-5438  
  Keywords Radio frequency; Microwave theory and techniques; Electric breakdown; Discharges (electric); Noise measurement; Sensitivity; RF signals; Corona; microwave devices; multipactor; radio frequency (RF) breakdown; RF high power  
  Abstract High power radio frequency (RF) breakdown testing is a subject of great relevance in the space industry, due to the increasing need of higher transmission power and smaller devices. This work presents a novel RF breakdown detection system, which monitors the same parameters as the microwave nulling system but with several advantages. Where microwave nulling-a de facto standard in RF breakdown testing-is narrowband and requires continuous tuning to keep its sensitivity, the proposed technique is broadband and maintains its performance for any RF signal. On top of that, defining the detection threshold is cumbersome due to the lack of an international standardized criterion. Small responses may appear in the detection system during the test and, sometimes, it is not possible to determine if these are an actual RF breakdown or random noise. This new detection system uses a larger analysis bandwidth, thus reducing the cases in which a small response is difficult to be classified. The proposed detection method represents a major step forward in high power testing as it runs without human intervention, warning the operator or decreasing the RF power automatically much faster than any human operator.  
  Address [Monerris-Belda, Oscar; Cervera Marin, Raul; Rodriguez Jodar, Miguel; Petit, John] Val Space Consortium, Valencia 46022, Spain, Email: oscar.monerris@val-space.com  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9480 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000725804500027 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5042  
Permanent link to this record
 

 
Author Ackermann, M. et al; Garcia Soto, A. url  doi
openurl 
  Title (up) High-energy and ultra-high-energy neutrinos: A Snowmass white paper Type Journal Article
  Year 2022 Publication Journal of High Energy Astrophysics Abbreviated Journal J. High Energy Astrophys.  
  Volume 36 Issue Pages 55-110  
  Keywords  
  Abstract Astrophysical neutrinos are excellent probes of astroparticle physics and high-energy physics. With energies far beyond solar, supernovae, atmospheric, and accelerator neutrinos, high-energy and ultrahigh-energy neutrinos probe fundamental physics from the TeV scale to the EeV scale and beyond. They are sensitive to physics both within and beyond the Standard Model through their production mechanisms and in their propagation over cosmological distances. They carry unique information about their extreme non-thermal sources by giving insight into regions that are opaque to electromagnetic radiation. This white paper describes the opportunities astrophysical neutrino observations offer for astrophysics and high-energy physics, today and in coming years.  
  Address [Ackermann, Markus] DESY, D-15738 Zeuthen, Germany, Email: markus.ackermann@desy.de;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2214-4048 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000890744900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5434  
Permanent link to this record
 

 
Author Mandal, S.; Miranda, O.G.; Sanchez Garcia, G.; Valle, J.W.F.; Xu, X.J. url  doi
openurl 
  Title (up) High-energy colliders as a probe of neutrino properties Type Journal Article
  Year 2022 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 829 Issue Pages 137110 - 5pp  
  Keywords  
  Abstract The mediators of neutrino mass generation can provide a probe of neutrino properties at the next round of high-energy hadron (FCC-hh) and lepton colliders (FCC-ee/ILC/CEPC/CLIC). We show how the decays of the Higgs triplet scalars mediating the simplest seesaw mechanism can shed light on the neutrino mass scale and mass-ordering, as well as the atmospheric octant. Four-lepton signatures at the high-energy frontier may provide the discovery-site for charged lepton flavor non-conservation in nature, rather than low-energy intensity frontier experiments.  
  Address [Mandal, Sanjoy] Korea Inst Adv Study, Seoul 02455, South Korea, Email: smandal@kias.re.kr;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000831681800020 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5301  
Permanent link to this record
 

 
Author Terol-Calvo, J.; Tortola, M.; Vicente, A. url  doi
openurl 
  Title (up) High-energy constraints from low-energy neutrino nonstandard interactions Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 101 Issue 9 Pages 095010 - 14pp  
  Keywords  
  Abstract Many scenarios of new physics predict the existence of neutrino nonstandard interactions, new vector contact interactions between neutrinos, and first generation fermions beyond the Standard Model. We obtain model-independent constraints on the Standard Model effective field theory at high energies from bounds on neutrino nonstandard interactions derived at low energies. Our analysis explores a large set of new physics scenarios and includes full one-loop running effects below and above the electroweak scale. Our results show that neutrino nonstandard interactions already push the scale of new physics beyond the TeV. We also conclude that bounds derived by other experimental probes, in particular by low-energy precision measurements and by charged lepton flavor violation searches, are generally more stringent. Our study constitutes a first step toward the systematization of phenomenological analyses to evaluate the impact of neutrino nonstandard interactions for new physics scenarios at high energies.  
  Address [Terol-Calvo, Jorge; Tortola, Mariam; Vicente, Avelino] Univ Valencia, CSIC, Inst Fis Corpuscular, C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: jorge.terol@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000531733300009 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4392  
Permanent link to this record
 

 
Author Woolley, B.; Burt, G.; Dexter, A.C.; Peacock, R.; Millar, W.L.; Catalan Lasheras, N.; Degiovanni, A.; Grudiev, A.; Mcmonagle, G.; Syratchev, I.; Wuensch, W.; Rodriguez Castro, E.; Giner Navarro, J. doi  openurl
  Title (up) High-gradient behavior of a dipole-mode rf structure Type Journal Article
  Year 2020 Publication Physical Review Accelerators and Beams Abbreviated Journal Phys. Rev. Accel. Beams  
  Volume 23 Issue 12 Pages 122002 - 11pp  
  Keywords  
  Abstract A normal-conducting, X-band traveling wave structure operating in the dipole mode has been systematically high-gradient tested to gain insight into the maximum possible gradients in these types of structure. Measured structure conditioning, breakdown behavior, and achieved surface fields are reported as well as a postmortem analysis of the breakdown position and a scanning electron microscope analysis of the high-field surfaces. The results of these measurements are then compared to high-gradient results from monopole-mode cavities. Scaled to a breakdown rate of 10(-6), the cavities were found to operate at a peak electric field of 154 MV/m and a peak modified Poynting vector S-c of 5.48 MW/mm(2). The study provides important input for the further development of dipole-mode cavities for use in the Compact Linear Collider as a crab cavity and dipole-mode cavities for use in x-ray free-electron lasers as well as for studies of the fundamental processes in vacuum arcs. Of particular relevance are the unique field patterns in dipole cavities compared to monopole cavities, where the electric and magnetic fields peak in orthogonal planes, which allow the separation of the role of electric and magnetic fields in breakdown via postmortem damage observation. The azimuthal variation of breakdown crater density is measured and is fitted to sinusoidal functions. The best fit is a power law fit of exponent 6. This is significant, as it shows how breakdown probability varies over a surface area with a varying electric field after conditioning to a given peak field.  
  Address [Woolley, B.; Burt, G.; Dexter, A. C.; Peacock, R.; Millar, W. L.] Univ Lancaster, Lancaster LA1 4YW, England  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9888 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000614886300002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4696  
Permanent link to this record
 

 
Author Vnuchenko, A.; Esperante Pereira, D.; Gimeno, B.; Benedetti, S.; Catalan Lasheras, N.; Garlasch, M.; Grudiev, A.; McMonagle, G.; Pitman, S.; Syratchev, I.; Timmins, M.; Wegner, R.; Woolley, B.; Wuensch, W.; Faus-Golfe, A. doi  openurl
  Title (up) High-gradient testing of an S-band, normal-conducting low phase velocity accelerating structure Type Journal Article
  Year 2020 Publication Physical Review Accelerators and Beams Abbreviated Journal Phys. Rev. Accel. Beams  
  Volume 23 Issue 8 Pages 084801 - 13pp  
  Keywords  
  Abstract A novel high-gradient accelerating structure with low phase velocity, v/c = 0.38, has been designed, manufactured and high-power tested. The structure was designed and built using the methodology and technology developed for CLIC 100 MV/m high-gradient accelerating structures, which have speed of light phase velocity, but adapts them to a structure for nonrelativistic particles. The parameters of the structure were optimized for the compact proton therapy linac project, and specifically to 76 MeV energy protons, but the type of structure opens more generally the possibility of compact low phase velocity linacs. The structure operates in S-band, is backward traveling wave (BTW) with a phase advance of 150 degrees and has an active length of 19 cm. The main objective for designing and testing this structure was to demonstrate that low velocity particles, in particular protons, can be accelerated with high gradients. In addition, the performance of this structure compared to other type of structures provides insights into the factors that limit high gradient operation. The structure was conditioned successfully to high gradient using the same protocol as for CLIC X-band structures. However, after the high power test, data analysis realized that the structure had been installed backwards, that is, the input power had been fed into what is nominally the output end of the structure. This resulted in higher peak fields at the power feed end and a steeply decreasing field profile along the structure, rather than the intended near constant field and gradient profile. A local accelerating gradient of 81 MV/m near the input end was achieved at a pulse length of 1.2 μs and with a breakdown rate (BDR) of 7.2 x 10(-7) 1 /pulse/m. The reverse configuration was accidental but the operating with this field condition gave very important insights into high-gradient behaviour and a comprehensive analysis has been carried out. A particular attention was paid to the characterization of the distribution of BD positions along the structure and within a cell.  
  Address [Vnuchenko, A.; Esperante Pereira, D.; Gimeno Martinez, B.] Inst Fsica Corpuscular IFIC, Valencia 46980, Spain, Email: anna.vnuchenko@cern.ch  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9888 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000582958800002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4584  
Permanent link to this record
 

 
Author Millar, W.L. et al; Bañon Caballero, D. doi  openurl
  Title (up) High-Power Test of Two Prototype X-Band Accelerating Structures Based on SwissFEL Fabrication Technology Type Journal Article
  Year 2023 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.  
  Volume 70 Issue 1 Pages 1-19  
  Keywords Radio frequency; Life estimation; Temperature measurement; Wires; Electric breakdown; Brazing; Rendering (computer graphics); Acceleration; breakdown; high gradient; linear accelerator cavity (LINAC); radio frequency (RF); test facilities; vacuum arc; X-band  
  Abstract This article presents the design, construction, and high-power test of two $X$ -band radio frequency (RF) accelerating structures built as part of a collaboration between CERN and the Paul Scherrer Institute (PSI) for the compact linear collider (CLIC) study. The structures are a modified “tuning-free ” variant of an existing CERN design and were assembled using Swiss free electron laser (SwissFEL) production methods. The purpose of the study is two-fold. The first objective is to validate the RF properties and high-power performance of the tuning-free, vacuum brazed PSI technology. The second objective is to study the structures' high-gradient behavior to provide insight into the breakdown and conditioning phenomena as they apply to high-field devices in general. Low-power RF measurements showed that the structure field profiles were close to the design values, and both structures were conditioned to accelerating gradients in excess of 100 MV/m in CERN's high-gradient test facility. Measurements performed during the second structure test suggest that the breakdown rate (BDR) scales strongly with the accelerating gradient, with the best fit being a power law relation with an exponent of 31.14. In both cases, the test results indicate that stable, high-gradient operation is possible with tuning-free, vacuum brazed structures of this kind.  
  Address [Millar, William L. L.; Grudiev, Alexej; Wuensch, Walter; Lasheras, Nuria Catalan; McMonagle, Gerard; Volpi, Matteo; Paszkiewicz, Jan; Edwards, Amelia; Wegner, Rolf; Bursali, Hikmet; Woolley, Benjamin; Magazinik, Anastasiya; Syratchev, Igor; Vnuchenko, Anna; Pitman, Samantha; del Pozo Romano, Veronica; Caballero, David Banon] CERN, CH-1211 Geneva, Switzerland, Email: lee.millar@cern.ch  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9499 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000920658600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5471  
Permanent link to this record
 

 
Author Banerjee, P.; Coutinho, A.; Engel, T.; Gurgone, A.; Signer, A.; Ulrich, Y. url  doi
openurl 
  Title (up) High-precision muon decay predictions for ALP searches Type Journal Article
  Year 2023 Publication Scipost Physics Abbreviated Journal SciPost Phys.  
  Volume 15 Issue 1 Pages 021 - 38pp  
  Keywords  
  Abstract We present an improved theoretical prediction of the positron energy spectrum for the polarised Michel decay & mu;+ & RARR; e+ & nu;e & nu; over bar & mu;. In addition to the full next-to-next-to-leading order correction of order & alpha;2 in the electromagnetic coupling, we include logarithmically enhanced terms at even higher orders. Logarithms due to collinear emission are included at next-to-leading accuracy up to order & alpha;4. At the endpoint of the Michel spectrum, soft photon emission results in large logarithms that are resummed up to next-to-next-to leading logarithmic accuracy. We apply our results in the context of the MEG II and Mu3e experiments to estimate the impact of the theory error on the branching ratio sensitivity for the lepton-flavour-violating decay & mu;+ & RARR; e+X of a muon into an axion-like particle X.  
  Address [Banerjee, Pulak] Zhejiang Univ, Zhejiang Inst Modern Phys, Dept Phys, Hangzhou 310027, Peoples R China  
  Corporate Author Thesis  
  Publisher Scipost Foundation Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2542-4653 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001038392400002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5595  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva