|   | 
Details
   web
Records
Author Centelles Chulia, S.; Miranda, O.G.; Valle, J.W.F.
Title (down) Leptonic neutral-current probes in a short-distance DUNE-like setup Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 109 Issue 11 Pages 115007 - 12pp
Keywords
Abstract Precision measurements of neutrino -electron scattering may provide a viable way to test the nonminimal form of the charged and neutral current weak interactions within a hypothetical near -detector setup for the Deep Underground Neutrino Experiment (DUNE). Although low -statistics, these processes are clean and provide information complementing the results derived from oscillation studies. They could shed light on the scale of neutrino mass generation in low -scale seesaw schemes.
Address [Chulia, Salvador Centelles] Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany, Email: chulia@mpi-hd.mpg.de;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001243878300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6146
Permanent link to this record
 

 
Author Bhattacharya, S.; Mondal, N.; Roshan, R.; Vatsyayan, D.
Title (down) Leptogenesis, dark matter and gravitational waves from discrete symmetry breaking Type Journal Article
Year 2024 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue 6 Pages 029 - 25pp
Keywords leptogenesis; dark matter theory; gravitational waves / theory
Abstract We analyse a model that connects the neutrino sector and the dark sector of the universe via a mediator 41., stabilised by a discrete Z4 symmetry that breaks to a remnant Z2 upon 41. acquiring a non -zero vacuum expectation value (v phi). The model accounts for the observed baryon asymmetry of the universe via additional contributions to the canonical Type -I leptogenesis. The Z4 symmetry breaking scale (v phi) in the model not only establishes a connection between the neutrino sector and the dark sector, but could also lead to gravitational wave signals that are within the reach of current and future experimental sensitivities.
Address [Bhattacharya, Subhaditya; Mondal, Niloy] Indian Inst Technol Guwahati, Dept Phys, Gauhati 781039, Assam, India, Email: subhab@iitg.ac.in;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001246744300003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6162
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jaimes Elles, S.J.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Rebollo De Miguel, M.; Ruiz Vidal, J.; Sanderswood, I.; Zhuo, J.
Title (down) Improved Measurement of CP Violation Parameters in B0s → J/ψ K+ K- Decays in the Vicinity of the φ(1020) Resonance Type Journal Article
Year 2024 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 132 Issue 5 Pages 051802 - 12pp
Keywords
Abstract The decay-time-dependent CP asymmetry in B0s -> J=psi(-> mu+mu-)K+K- decays is measured using proton-proton collision data, corresponding to an integrated luminosity of 6 fb-1, collected with the LHCb detector at a center-of-mass energy of 13 TeV. Using a sample of approximately 349 000 B0s signal decays with an invariant K+K- mass in the vicinity of the phi(1020) resonance, the CP-violating phase phi s is measured, along with the difference in decay widths of the light and heavy mass eigenstates of the B0s-B over bar 0s system, Delta Gamma s, and the difference of the average B0s and B0 meson decay widths, Gamma s – Gamma d. The values obtained are phi s = -0.039 +/- 0.022 +/- 0.006 rad, Delta Gamma s = 0.0845 +/- 0.0044 +/- 0.0024 ps-1, and -0.0015 +/- 0.0014 ps-1, where the first uncertainty is statistical and the second systematic. These are the most precise single measurements to date and are consistent with expectations based on the Standard Model and with the previous LHCb analyses of this decay. These results are combined with previous independent LHCb measurements. The phase phi s is also measured independently for each polarization state of the K+K- system and shows no evidence for polarization dependence.
Address [Baptista de Souza Leite, J.; Bediaga, I. B.; Cruz Torres, M.; De Freitas Carneiro Da Graca, U.; De Miranda, J. M.; De Serio, M.; Debernardis, F.; dos Reis, A. C.; Falcao, L. N.; Galati, G.; Gomes, A.; Massafferri, A.; Pappagallo, M.; Santoro, L.; Simone, S.; Torres Machado, D.] Ctr Brasileiro Pesquisas Fisicas CBPF, Rio De Janeiro, Brazil
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:001190889800002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6111
Permanent link to this record
 

 
Author DUNE Collaboration (Abud, A.A. et al); Amedo, P.; Antonova, M.; Barenboim, G.; Benitez Montiel, C.; Cervera-Villanueva, A.; De Romeri, V.; Garcia-Peris, M.A.; Lopez March, N.; Martin-Albo, J.; Martinez Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Rocabado Rocha, J.L.; Sorel, M.; Soto-Oton, J.; Tortola, M.; Tuzi, M.; Valle, J.W.F.; Yahlali, N.
Title (down) Impact of cross-section uncertainties on supernova neutrino spectral parameter fitting in the Deep Underground Neutrino Experiment Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 107 Issue 11 Pages 112012 - 25pp
Keywords
Abstract A primary goal of the upcoming Deep Underground Neutrino Experiment (DUNE) is to measure the Oo10 thorn MeV neutrinos produced by a Galactic core-collapse supernova if one should occur during the lifetime of the experiment. The liquid-argon-based detectors planned for DUNE are expected to be uniquely sensitive to the & nu;e component of the supernova flux, enabling a wide variety of physics and astrophysics measurements. A key requirement for a correct interpretation of these measurements is a good understanding of the energy-dependent total cross section & sigma;oE & nu; thorn for charged-current & nu;e absorption on argon. In the context of a simulated extraction of supernova & nu;e spectral parameters from a toy analysis, we investigate the impact of & sigma;oE & nu; thorn modeling uncertainties on DUNE's supernova neutrino physics sensitivity for the first time. We find that the currently large theoretical uncertainties on & sigma;oE & nu; thorn must be substantially reduced before the & nu;e flux parameters can be extracted reliably; in the absence of external constraints, a measurement of the integrated neutrino luminosity with less than 10% bias with DUNE requires & sigma;oE & nu; thorn to be known to about 5%. The neutrino spectral shape parameters can be known to better than 10% for a 20% uncertainty on the cross-section scale, although they will be sensitive to uncertainties on the shape of & sigma;oE & nu; thorn . A direct measurement of low-energy & nu;e-argon scattering would be invaluable for improving the theoretical precision to the needed level.
Address [Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001063367400002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5669
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jaimes Elles, S.J.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Rebollo De Miguel, M.; Sanderswood, I.; Zhuo, J.
Title (down) Helium identification with LHCb Type Journal Article
Year 2024 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 19 Issue 2 Pages P02010 - 23pp
Keywords dE/dx detectors; Ion identification systems; Large detector systems for particle and astroparticle physics; Particle identification methods
Abstract The identification of helium nuclei at LHCb is achieved using a method based on measurements of ionisation losses in the silicon sensors and timing measurements in the Outer Tracker drift tubes. The background from photon conversions is reduced using the RICH detectors and an isolation requirement. The method is developed using pp collision data at root s = 13 TeV recorded by the LHCb experiment in the years 2016 to 2018, corresponding to an integrated luminosity of 5.5 fb(-1). A total of around 10(5) helium and antihelium candidates are identified with negligible background contamination. The helium identification efficiency is estimated to be approximately 50% with a corresponding background rejection rate of up to O(10(12)). These results demonstrate the feasibility of a rich programme of measurements of QCD and astrophysics interest involving light nuclei.
Address [Egede, U.; Fujii, Y.; Hadavizadeh, T.; Henderson, R. D. L.; Lane, J. J.; Monk, M.; Song, R.; Walton, E. J.; Ward, J. A.] Monash Univ, Sch Phys & Astron, Melbourne, Vic, Australia, Email: rmoise@cern.ch
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:001185791500006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6068
Permanent link to this record
 

 
Author Ferrer-Sanchez, A.; Martin-Guerrero, J.; Ruiz de Austri, R.; Torres-Forne, A.; Font, J.A.
Title (down) Gradient-annihilated PINNs for solving Riemann problems: Application to relativistic hydrodynamics Type Journal Article
Year 2024 Publication Computer Methods in Applied Mechanics and Engineering Abbreviated Journal Comput. Meth. Appl. Mech. Eng.
Volume 424 Issue Pages 116906 - 18pp
Keywords Riemann problem; Euler equations; Machine learning; Neural networks; Relativistic hydrodynamics
Abstract We present a novel methodology based on Physics-Informed Neural Networks (PINNs) for solving systems of partial differential equations admitting discontinuous solutions. Our method, called Gradient-Annihilated PINNs (GA-PINNs), introduces a modified loss function that forces the model to partially ignore high-gradients in the physical variables, achieved by introducing a suitable weighting function. The method relies on a set of hyperparameters that control how gradients are treated in the physical loss. The performance of our methodology is demonstrated by solving Riemann problems in special relativistic hydrodynamics, extending earlier studies with PINNs in the context of the classical Euler equations. The solutions obtained with the GA-PINN model correctly describe the propagation speeds of discontinuities and sharply capture the associated jumps. We use the relative l(2) error to compare our results with the exact solution of special relativistic Riemann problems, used as the reference ''ground truth'', and with the corresponding error obtained with a second-order, central, shock-capturing scheme. In all problems investigated, the accuracy reached by the GA-PINN model is comparable to that obtained with a shock-capturing scheme, achieving a performance superior to that of the baseline PINN algorithm in general. An additional benefit worth stressing is that our PINN-based approach sidesteps the costly recovery of the primitive variables from the state vector of conserved variables, a well-known drawback of grid-based solutions of the relativistic hydrodynamics equations. Due to its inherent generality and its ability to handle steep gradients, the GA-PINN methodology discussed in this paper could be a valuable tool to model relativistic flows in astrophysics and particle physics, characterized by the prevalence of discontinuous solutions.
Address [Ferrer-Sanchez, Antonio; Martin-Guerrero, JoseD.] ETSE UV, Elect Engn Dept, IDAL, Avgda Univ S-N, Valencia 46100, Spain, Email: Antonio.Ferrer-Sanchez@uv.es
Corporate Author Thesis
Publisher Elsevier Science Sa Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0045-7825 ISBN Medium
Area Expedition Conference
Notes WOS:001221797400001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 6126
Permanent link to this record
 

 
Author Lessa, A.; Sanz, V.
Title (down) Going beyond Top EFT Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 107 - 29pp
Keywords SMEFT; Dark Matter at Colliders; Supersymmetry
Abstract We present a new way to interpret Top Standard Model measurements going beyond the SMEFT framework. Instead of the usual paradigm in Top EFT, where the main effects come from tails in momenta distributions, we propose an interpretation in terms of new physics which only shows up at loop-level. The effects of these new states, which can be lighter than required within the SMEFT, appear as distinctive structures at high momenta, but may be suppressed at the tails of distributions. As an illustration of this phenomena, we present the explicit case of a UV model with a Z \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{Z} $$\end{document} 2 symmetry, including a Dark Matter candidate and a top-partner. This simple UV model reproduces the main features of this class of signatures, particularly a momentum-dependent form factor with more structure than the SMEFT. As the new states can be lighter than in SMEFT, we explore the interplay between the reinterpretation of direct searches for colored states and Dark Matter, and Top measurements, made by ATLAS and CMS in the differential t t over bar \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t\overline{t} $$\end{document} final state. We also compare our method with what one would expect using the SMEFT reinterpretation, finding that using the full loop information provides a better discriminating power.
Address [Lessa, Andre] Univ Fed ABC, Ctr Ciencias Nat & Humanas, BR-09210580 Santo Andre, SP, Brazil, Email: andre.lessa@ufabc.edu.br
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001205498200004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6108
Permanent link to this record
 

 
Author NA64 Collaboration (Andreev, Y.M. et al); Molina Bueno, L.; Tuzi, M.
Title (down) First Results in the Search for Dark Sectors at NA64 with the CERN SPS High Energy Muon Beam Type Journal Article
Year 2024 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 132 Issue 21 Pages 211803 - 7pp
Keywords
Abstract We report the first search for dark sectors performed at the NA64 experiment employing a high energy muon beam and a missing energy-momentum technique. Muons from the M2 beamline at the CERN Super Proton Synchrotron with a momentum of 160 GeV/c are directed to an active target. The signal signature consists of a single scattered muon with momentum < 80 GeV/c in the final state, accompanied by missing energy, i.e., no detectable activity in the downstream calorimeters. For a total dataset of (1.98 +/- 0.02) x 10(10) muons on target, no event is observed in the expected signal region. This allows us to set new limits on the remaining (m(Z)'; g(Z)') parameter space of a new Z' (L-mu – L-tau) vector boson which could explain the muon (g – 2)(mu) anomaly. Additionally, our study excludes part of the parameter space suggested by the thermal dark matter relic abundance. Our results pave the way to explore dark sectors and light dark matter with muon beams in a unique and complementary way to other experiments.
Address [Banerjee, D.; Bernhard, J.; Charitonidis, N.; Girod, S.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland, Email: paolo.crivelli@cern.ch;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:001239696000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6142
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jaimes Elles, S.J.; Jashal, B.K.; Martinez Vidal, F.; Oyanguren, A.; Rebollo De Miguel, M.; Remon Alepuz, C.; Ruiz Vidal, J.; Sanderswood, I.
Title (down) First observation of the B+→D+sD−sK+ decay Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue Pages 034012 - 14pp
Keywords
Abstract The B+→D+sD−sK+ decay is observed for the first time using proton-proton collision data collected by the LHCb detector at center-of-mass energies of 7, 8, and 13 TeV, corresponding to an integrated luminosity of 9  fb−1. Its branching fraction relative to that of the B+→D+D−K+ decay is measured to be B(B+→D+sD−sK+)B(B+→D+D−K+)=0.525±0.033±0.027±0.034, where the first uncertainty is statistical, the second systematic, and the third is due to the uncertainties on the branching fractions of the D±s→K∓K±π± and D±→K∓π±π± decays. This measurement fills an experimental gap in the knowledge of the family of Cabibbo-favored ¯b→¯cc¯s transitions and opens the path for unique studies of spectroscopy in future.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6090
Permanent link to this record
 

 
Author Guadilla, V.; Algora, A.; Estienne, M.; Fallot, M.; Gelletly, W.; Porta, A.; Rigalleau, L.M.; Stutzmann, J.S.
Title (down) First measurements with a new fl-electron detector for spectral shape studies Type Journal Article
Year 2024 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 19 Issue 2 Pages P02027 - 21pp
Keywords Detector modelling and simulations I (interaction of radiation with matter; interaction of photons with matter; interaction of hadrons with matter; etc); Instrumentation for radioactive beams (fragmentation devices; fragment and isotope; separators incl. ISOL; isobar separators; ion and atom traps; weak-beam diagnostics; radioactive-beam ion sources); Hybrid detectors; Spectrometers
Abstract The shape of the electron spectrum emitted in /3 decay carries a wealth of information about nuclear structure and fundamental physics. In spite of that, few dedicated measurements have been made of /3 -spectrum shapes. In this work we present a newly developed detector for /3 electrons based on a telescope concept. A thick plastic scintillator is employed in coincidence with a thin silicon detector. The first measurements employing this detector have been carried out with mono -energetic electrons from the high-energy resolution electron -beam spectrometer at Bordeaux. Here we report on the good reproduction of the experimental spectra of mono -energetic electrons using Monte Carlo simulations. This is a crucial step for future experiments, where a detailed Monte Carlo characterization of the detector is needed to determine the shape of the /3 -electron spectra by deconvolution of the measured spectra with the response function of the detector. A chamber to contain two telescope assemblies has been designed for future /3 -decay experiments at the Ion Guide Isotope Separator On -Line facility in Jyvaskyla, aimed at improving our understanding of reactor antineutrino spectra.
Address [Guadilla, V.; Estienne, M.; Fallot, M.; Porta, A.; Rigalleau, L. -m.; Stutzmann, J. -s.] Univ Nantes, Subatech, IMT Atlantique, CNRS,IN2P3, F-44307 Nantes, France, Email: vguadilla@fuw.edu.pl
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:001181748300007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6064
Permanent link to this record