toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ortiz Arciniega, J.L.; Carrio, F.; Valero, A. url  doi
openurl 
  Title (up) FPGA implementation of a deep learning algorithm for real-time signal reconstruction in particle detectors under high pile-up conditions Type Journal Article
  Year 2019 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 14 Issue Pages P09002 - 13pp  
  Keywords Data processing methods; Pattern recognition; cluster finding; calibration and fitting methods; Simulation methods and programs  
  Abstract The analog signals generated in the read-out electronics of particle detectors are shaped prior to the digitization in order to improve the signal to noise ratio (SNR). The real amplitude of the analog signal is then obtained using digital filters, which provides information about the energy deposited in the detector. The classical digital filters have a good performance in ideal situations with Gaussian electronic noise and no pulse shape distortion. However, high-energy particle colliders, such as the Large Hadron Collider (LHC) at CERN, can produce multiple simultaneous events, which produce signal pileup. The performance of classical digital filters deteriorates in these conditions since the signal pulse shape gets distorted. In addition, this type of experiments produces a high rate of collisions, which requires high throughput data acquisitions systems. In order to cope with these harsh requirements, new read-out electronics systems are based on high-performance FPGAs, which permit the utilization of more advanced real-time signal reconstruction algorithms. In this paper, a deep learning method is proposed for real-time signal reconstruction in high pileup particle detectors. The performance of the new method has been studied using simulated data and the results are compared with a classical FIR filter method. In particular, the signals and FIR filter used in the ATLAS Tile Calorimeter are used as benchmark. The implementation, resources usage and performance of the proposed Neural Network algorithm in FPGA are also presented.  
  Address [Ortiz Arciniega, J. L.] Univ Valencia, Avinguda Univ S-N, Burjassot, Spain, Email: orarjo@alumni.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000486990000002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4150  
Permanent link to this record
 

 
Author Caballero, L.; Albiol, F.; Corbi Bellot, A.; Domingo-Pardo, C.; Leganes Nieto, J.L.; Agramunt Ros, J.; Contreras, P.; Monserrate, M.; Olleros Rodriguez, P.; Perez Magan, D.L. url  doi
openurl 
  Title (up) Gamma-ray imaging system for real-time measurements in nuclear waste characterisation Type Journal Article
  Year 2018 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 13 Issue Pages P03016 - 23pp  
  Keywords Inspection with gamma rays; Radiation monitoring  
  Abstract Acompact, portable and large field-of-viewgamma camera that is able to identify, locate and quantify gamma-ray emitting radioisotopes in real-time has been developed. The device delivers spectroscopic and imaging capabilities that enable its use it in a variety of nuclear waste characterisation scenarios, such as radioactivity monitoring in nuclear power plants and more specifically for the decommissioning of nuclear facilities. The technical development of this apparatus and some examples of its application in field measurements are reported in this article. The performance of the presented gamma-camera is also benchmarked against other conventional techniques.  
  Address [Caballero, L.] Univ Valencia, CSIC, Inst Fis Corpuscular, C Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: Luis.Caballero@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000428146300006 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3540  
Permanent link to this record
 

 
Author ATLAS TRT collaboration (Mindur, B. et al); Mitsou, V.A.; Valls Ferrer, J.A. doi  openurl
  Title (up) Gas gain stabilisation in the ATLAS TRT detector Type Journal Article
  Year 2016 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 11 Issue Pages P04027 - 19pp  
  Keywords Gaseous detectors; Particle tracking detectors (Gaseous detectors); Transition radiation detectors; Wire chambers (MWPC, Thin-gap chambers, drift chambers, drift tubes, proportional, chambers etc)  
  Abstract The ATLAS (one of two general purpose detectors at the LHC) Transition Radiation Tracker (TRT) is the outermost of the three tracking subsystems of the ATLAS Inner Detector. It is a large straw-based detector and contains about 350,000 electronics channels. The performance of the TRT as tracking and particularly particle identification detector strongly depends on stability of the operation parameters with most important parameter being the gas gain which must be kept constant across the detector volume. The gas gain in the straws can vary significantly with atmospheric pressure, temperature, and gas mixture composition changes. This paper presents a concept of the gas gain stabilisation in the TRT and describes in detail the Gas Gain Stabilisation System (GGSS) integrated into the Detector Control System (DCS). Operation stability of the GGSS during Run-1 is demonstrated.  
  Address [Beddall, A. J.] Bahcesehir Univ, Fac Engn & Nat Sci, TR-34353 Istanbul, Turkey, Email: bartosz.mindur@agh.edu.pl  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000375746400046 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2685  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jaimes Elles, S.J.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Rebollo De Miguel, M.; Sanderswood, I.; Zhuo, J. url  doi
openurl 
  Title (up) Helium identification with LHCb Type Journal Article
  Year 2024 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 19 Issue 2 Pages P02010 - 23pp  
  Keywords dE/dx detectors; Ion identification systems; Large detector systems for particle and astroparticle physics; Particle identification methods  
  Abstract The identification of helium nuclei at LHCb is achieved using a method based on measurements of ionisation losses in the silicon sensors and timing measurements in the Outer Tracker drift tubes. The background from photon conversions is reduced using the RICH detectors and an isolation requirement. The method is developed using pp collision data at root s = 13 TeV recorded by the LHCb experiment in the years 2016 to 2018, corresponding to an integrated luminosity of 5.5 fb(-1). A total of around 10(5) helium and antihelium candidates are identified with negligible background contamination. The helium identification efficiency is estimated to be approximately 50% with a corresponding background rejection rate of up to O(10(12)). These results demonstrate the feasibility of a rich programme of measurements of QCD and astrophysics interest involving light nuclei.  
  Address [Egede, U.; Fujii, Y.; Hadavizadeh, T.; Henderson, R. D. L.; Lane, J. J.; Monk, M.; Song, R.; Walton, E. J.; Ward, J. A.] Monash Univ, Sch Phys & Astron, Melbourne, Vic, Australia, Email: rmoise@cern.ch  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001185791500006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6068  
Permanent link to this record
 

 
Author Rebel, B.; Hall, C.; Bernard, E.; Faham, C.H.; Ito, T.M.; Lundberg, B.; Messina, M.; Monrabal, F.; Pereverzev, S.P.; Resnati, F.; Rowson, P.C.; Soderberg, M.; Strauss, T.; Tomas, A.; Va'vra, J.; Wang, H. url  doi
openurl 
  Title (up) High voltage in noble liquids for high energy physics Type Journal Article
  Year 2014 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 9 Issue Pages T08004 - 57pp  
  Keywords Noble liquid detectors (scintillation, ionization, double-phase); Neutrino detectors; Neutron detectors (cold, thermal, fast neutrons); Dark Matter detectors (WIMPs, axions, etc.)  
  Abstract A workshop was held at Fermilab November 8-9, 2013 to discuss the challenges of using high voltage in noble liquids. The participants spanned the fields of neutrino, dark matter, and electric dipole moment physics. All presentations at the workshop were made in plenary sessions. This document summarizes the experiences and lessons learned from experiments in these fields at developing high voltage systems in noble liquids.  
  Address [Rebel, B.; Soderberg, M.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA, Email: rebel@fnal.gov  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000341927600043 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1947  
Permanent link to this record
 

 
Author NEXT Collaboration (Rogers, L. et al); Alvarez, V.; Benlloch-Rodriguez, J.M.; Botas, A.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Ferrario, P.; Gomez-Cadenas, J.J.; Kekic, M.; Laing, A.; Lopez-March, N.; Martinez, A.; Martinez-Lema, G.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Perez, J.; Querol, M.; Renner, J.; Rodriguez, J.; Romo-Luque, C; Simon, A.; Sorel, M.; Torrent, J.; Yahlali, N. url  doi
openurl 
  Title (up) High voltage insulation and gas absorption of polymers in high pressure argon and xenon gases Type Journal Article
  Year 2018 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 13 Issue Pages P10002 - 19pp  
  Keywords Gaseous detectors; Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators)  
  Abstract High pressure gas time projection chambers (HPGTPCs) are made with a variety of materials, many of which still await proper characterization in high pressure noble gas environments. As HPGTPCs increase in size toward ton-scale detectors, assemblies become larger and more complex, creating a need for detailed understanding of how structural supports and high voltage insulators behave. This includes identification of materials with predictable mechanical properties and without surface charge accumulation that may lead to field deformation or sparking. This paper explores the mechanical and electrical effects of high pressure gas environments on insulating polymers PTFE, HDPE, PEEK, POM and UHMW in argon and xenon, including studying gas absorption, swelling and high voltage insulation strength.  
  Address [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, 12 Phys Hall, Ames, IA 50011 USA, Email: leslie.rogers@mavs.uta.edu  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000445999500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3744  
Permanent link to this record
 

 
Author DUNE Collaboration (Abud, A.A. et al); Amedo, P.; Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Garcia-Peris, M.A.; Martin-Albo, J.; Martinez-Mirave, P.; Mena, O.; Molina Bueno, L.; Novella, P.; Pompa, F.; Rocabado Rocha, J.L.; Sorel, M.; Tortola, M.; Tuzi, M.; Valle, J.W.F.; Yahlali, N. url  doi
openurl 
  Title (up) Highly-parallelized simulation of a pixelated LArTPC on a GPU Type Journal Article
  Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 18 Issue 4 Pages P04034 - 35pp  
  Keywords Detector modelling and simulations II (electric fields, charge transport, multiplication, and induction, pulse formation, electron emission, etc); Simulation methods and programs; Nobleliquid detectors (scintillation, ionization, double-phase); Time projection Chambers (TPC)  
  Abstract The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 103 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype.  
  Address [Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: roberto@lbl.gov  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000986658100009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5551  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Martinez-Vidal, F.; Oyanguren, A.; Ruiz Valls, P.; Sanchez Mayordomo, C. url  doi
openurl 
  Title (up) Identification of beauty and charm quark jets at LHCb Type Journal Article
  Year 2015 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 10 Issue Pages P06013 - 29pp  
  Keywords Performance of High Energy Physics Detectors; Analysis and statistical methods  
  Abstract Identification of jets originating from beauty and charm quarks is important for measuring Standard Model processes and for searching for new physics. The performance of algorithms developed to select b- and c-quark jets is measured using data recorded by LHCb from proton-proton collisions at root s = 7TeV in 2011 and at root s = 8TeV in 2012. The efficiency for identifying a b (c) jet is about 65%(25%) with a probability for misidentifying a light-parton jet of 0.3% for jets with transverse momentum pT > 20GeV and pseudorapidity 2 : 2 < eta < 4.2. The dependence of the performance on the pT and eta of the jet is also measured.  
  Address [Bediaga, I.; De Miranda, J. M.; Ferreira Rodrigues, F.; Gomes, A.; Massafferri, A.; Osorio Rodrigues, B.; dos Reis, A. C.; Rodrigues, A. B.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000358004200029 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2314  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J. url  doi
openurl 
  Title (up) Identification of charm jets at LHCb Type Journal Article
  Year 2022 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 17 Issue 2 Pages P02028 - 23pp  
  Keywords Analysis and statistical methods; Pattern recognition; cluster finding; calibration and fitting methods; Performance of High Energy Physics Detectors  
  Abstract The identification of charm jets is achieved at LHCb for data collected in 2015-2018 using a method based on the properties of displaced vertices reconstructed and matched with jets. The performance of this method is determined using a dijet calibration dataset recorded by the LHCb detector and selected such that the jets are unbiased in quantities used in the tagging algorithm. The charm-tagging efficiency is reported as a function of the transverse momentum of the jet. The measured efficiencies are compared to those obtained from simulation and found to be in good agreement.  
  Address [Leite, J. Baptista; Bediaga, I; Torres, M. Cruz; De Miranda, J. M.; dos Reis, A. C.; Gomes, A.; Massafferri, A.; Machado, D. Torres] Ctr Brasileiro Pesquisas Fis CBPF, Rio De Janeiro, Brazil, Email: dcraik@cern.ch  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000770368300015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5177  
Permanent link to this record
 

 
Author Renner, J.; Cervera-Villanueva, A.; Hernando, J.A.; Izmaylov, A.; Monrabal, F.; Muñoz, J.; Nygren, D.; Gomez-Cadenas, J.J. url  doi
openurl 
  Title (up) Improved background rejection in neutrinoless double beta decay experiments using a magnetic field in a high pressure xenon TPC Type Journal Article
  Year 2015 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 10 Issue Pages P12020 - 19pp  
  Keywords Pattern recognition, cluster finding, calibration and fitting methods; Double-beta decay detectors; Time projection chambers; Particle tracking detectors (Gaseous detectors)  
  Abstract We demonstrate that the application of an external magnetic field could lead to an improved background rejection in neutrinoless double-beta (0 nu beta beta) decay experiments using a high-pressure xenon (HPXe) TPC. HPXe chambers are capable of imaging electron tracks, a feature that enhances the separation between signal events (the two electrons emitted in the 0 nu beta beta decay of Xe-136) and background events, arising chiefly from single electrons of kinetic energy compatible with the end-point of the 0 nu beta beta decay (Q(beta beta)). Applying an external magnetic field of sufficiently high intensity (in the range of 0.5-1 Tesla for operating pressures in the range of 5-15 atmospheres) causes the electrons to produce helical tracks. Assuming the tracks can be properly reconstructed, the sign of the curvature can be determined at several points along these tracks, and such information can be used to separate signal (0 nu beta beta) events containing two electrons producing a track with two different directions of curvature from background (single-electron) events producing a track that should spiral in a single direction. Due to electron multiple scattering, this strategy is not perfectly efficient on an event-by-event basis, but a statistical estimator can be constructed which can be used to reject background events by one order of magnitude at a moderate cost (about 30%) in signal efficiency. Combining this estimator with the excellent energy resolution and topological signature identification characteristic of the HPXe TPC, it is possible to reach a background rate of less than one count per ton-year of exposure. Such a low background rate is an essential feature of the next generation of 0 nu beta beta experiments, aiming to fully explore the inverse hierarchy of neutrino masses.  
  Address [Renner, J.; Imzaylov, A.; Monrabal, F.; Munoz, J.; Gomez-Cadenas, J. J.] CSIC, Inst Fis Corpuscular IFIC, Calle Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: jrenner@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000369998500053 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2549  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva