toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Baru, V.; Dong, X.K.; Du, M.L.; Filin, A.; Guo, F.K.; Hanhart, C.; Nefediev, A.; Nieves, J.; Wang, Q. url  doi
openurl 
  Title (up) Effective range expansion for narrow near-threshold resonances Type Journal Article
  Year 2022 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 833 Issue Pages 137290 - 7pp  
  Keywords Effective range expansion; Exotic states; Tetraquarks; Hadronic molecules  
  Abstract We discuss some general features of the effective range expansion, the content of its parameters with respect to the nature of the pertinent near-threshold states and the necessary modifications in the presence of coupled channels, isospin violations and unstable constituents. As illustrative examples, we analyse the properties of the chi(c1)(3872) and T-cc(+) states supporting the claim that these exotic states have a predominantly molecular nature.  
  Address [Baru, Vadim; Filin, Arseniy] Ruhr Univ Bochum, Inst Theoret Phys 2, D-44780 Bochum, Germany, Email: vadimb@tp2.rub.de  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000837882700019 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5327  
Permanent link to this record
 

 
Author Das, D.; Lopez-Ibañez, M.L.; Jay Perez, M.; Vives, O. url  doi
openurl 
  Title (up) Effective theories of flavor and the nonuniversal MSSM Type Journal Article
  Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 95 Issue 3 Pages 035001 - 16pp  
  Keywords  
  Abstract Flavor symmetries a la Froggatt-Nielsen provide a compelling way to explain the hierarchies of fermionic masses and mixing angles in the Yukawa sector. In supersymmetric (SUSY) extensions of the Standard Model where the mediation of SUSY breaking occurs at scales larger than the breaking of flavor, this symmetry must be respected not only by the Yukawas of the superpotential but also by the soft-breaking masses and trilinear terms. In this work we show that contrary to naive expectations, even starting with completely flavor blind soft breaking in the full theory at high scales, the low-energy sfermion mass matrices and trilinear terms of the effective theory, obtained upon integrating out the heavy mediator fields, are strongly nonuniversal. We explore the phenomenology of these SUSY flavor models after the latest LHC searches for new physics.  
  Address [Das, Dipankar; Lopez-Ibanez, M. L.; Jay Perez, M.; Vives, Oscar] Univ Valencia, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: dipankar.das@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000402238100001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3149  
Permanent link to this record
 

 
Author de Vega, I.; Bañuls, M.C.; Perez, A. url  doi
openurl 
  Title (up) Effects of dissipation on an adiabatic quantum search algorithm Type Journal Article
  Year 2010 Publication New Journal of Physics Abbreviated Journal New J. Phys.  
  Volume 12 Issue Pages 123010 - 19pp  
  Keywords  
  Abstract According to recent studies (Amin et al 2008 Phys. Rev. Lett. 100 060503), the effect of a thermal bath may improve the performance of a quantum adiabatic search algorithm. In this paper, we compare the effects of such a thermal environment on the algorithm performance with those of a structured environment similar to the one encountered in systems coupled to an electromagnetic field that exists within a photonic crystal. Whereas for all the parameter regimes explored here, the algorithm performance is worsened by contact with a thermal environment, the picture appears to be different when one considers a structured environment. In this case we show that by tuning the environment parameters to certain regimes, the algorithm performance can actually be improved with respect to the closed system case. Additionally, the relevance of considering the dissipation rates as complex quantities is discussed in both cases. More specifically, we find that the imaginary part of the rates cannot be neglected with the usual argument that it simply amounts to an energy shift and in fact influences crucially the system dynamics.  
  Address [de Vega, Ines] Univ Ulm, Inst Theoret Phys, D-89069 Ulm, Germany, Email: ines.devega@uni-ulm.de  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000285582800002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 303  
Permanent link to this record
 

 
Author Aguilar, A.C.; Binosi, D.; Ibañez, D.; Papavassiliou, J. url  doi
openurl 
  Title (up) Effects of divergent ghost loops on the Green's functions of QCD Type Journal Article
  Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 89 Issue 8 Pages 085008 - 26pp  
  Keywords  
  Abstract In the present work, we discuss certain characteristic features encoded in some of the fundamental QCD Green's functions, for which the origin can be traced back to the nonperturbative masslessness of the ghost field, in the Landau gauge. Specifically, the ghost loops that contribute to these Green's functions display infrared divergences, akin to those encountered in the perturbative treatment, in contradistinction to the gluonic loops, for which perturbative divergences are tamed by the dynamical generation of an effective gluon mass. In d = 4, the aforementioned divergences are logarithmic, thus causing a relatively mild impact, whereas in d = 3 they are linear, giving rise to enhanced effects. In the case of the gluon propagator, these effects do not interfere with its finiteness, but make its first derivative diverge at the origin, and introduce a maximum in the region of infrared momenta. The three-gluon vertex is also affected, and the induced divergent behavior is clearly exposed in certain special kinematic configurations, usually considered in lattice simulations; the sign of the corresponding divergence is unambiguously determined. The main underlying concepts are developed in the context of a simple toy model, which demonstrates clearly the interconnected nature of the various effects. The picture that emerges is subsequently corroborated by a detailed nonperturbative analysis, combining lattice results with the dynamical integral equations governing the relevant ingredients, such as the nonperturbative ghost loop and the momentumdependent gluon mass.  
  Address [Aguilar, A. C.] Univ Estadual Campinas, UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Sao Paulo, Brazil  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000334335000020 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1769  
Permanent link to this record
 

 
Author Schreeck, H.; Paschen, B.; Wieduwilt, P.; Ahlburg, P.; Andricek, L.; Dingfelder, J.; Frey, A.; Lutticke, F.; Marinas, C.; Richter, R.; Schwenker, B. doi  openurl
  Title (up) Effects of gamma irradiation on DEPFET pixel sensors for the Belle II experiment Type Journal Article
  Year 2020 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 959 Issue Pages 163522 - 9pp  
  Keywords DEPFET; Radiation damage; Particle tracking detectors; Belle II  
  Abstract For the Belle II experiment at KEK (Tsukuba, Japan) the KEKB accelerator was upgraded to deliver a 40 times larger instantaneous luminosity than before, which requires an increased radiation hardness of the detector components. As the innermost part of the Belle II detector, the pixel detector (PXD), based on DEPFET (DEpleted P-channel Field Effect Transistor) technology, is most exposed to radiation from the accelerator. An irradiation campaign was performed to verify that the PXD can cope with the expected amount of radiation. We present the results of this measurement campaign in which an X-ray machine was used to irradiate a single PXD half-ladder to a total dose of 266 kGy. The half-ladder is from the same batch as the half-ladders used for Belle II. According to simulations, the total accumulated dose corresponds to 7-10 years of Belle II operation. While individual components have been irradiated before, this campaign is the first full system irradiation. We discuss the effects on the DEPFET sensors, as well as the performance of the front-end electronics. In addition, we present efficiency studies of the half-ladder from beam tests performed before and after the irradiation.  
  Address [Schreeck, Harrison; Wieduwilt, Philipp; Frey, Ariane; Schwenker, Benjamin] Georg August Univ Gottingen, Phys Inst 2, Friedrich Hund Pl 1, D-37077 Gottingen, Germany, Email: harrison.schreeck@phys.uni-goettingen.de  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000518368800016 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4316  
Permanent link to this record
 

 
Author Tarifeño-Saldivia, A.; Soto, L. doi  openurl
  Title (up) Effects of gas chamber geometry and gas flow on the neutron production in a fast plasma focus neutron source Type Journal Article
  Year 2014 Publication Plasma Physics and Controlled Fusion Abbreviated Journal Plasma Phys. Control. Fusion  
  Volume 56 Issue 12 Pages 125013 - 5pp  
  Keywords pulsed neutron source; repetitive plasma focus; neutron yield measurement; fast plasma focus  
  Abstract This work reports that gas chamber geometry and gas flow management substantially affect the neutron production of a repetitive fast plasma focus. The gas flow rate is the most sensitive parameter. An appropriate design of the gas chamber combined with a suitable flow-rate management can lead to improvements in the neutron production of one order of magnitude working in a fast repetitive mode.  
  Address [Tarifeno-Saldivia, Ariel; Soto, Leopoldo] Comis Chilena Energia Nucl CCHEN, Santiago, Chile, Email: atarisal@gmail.com;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0741-3335 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000346926300024 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2070  
Permanent link to this record
 

 
Author King, S.F.; Molina Sedgwick, S.; Parke, S.J.; Prouse, N.W. url  doi
openurl 
  Title (up) Effects of matter density profiles on neutrino oscillations for T2HK and T2HKK Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 101 Issue 7 Pages 076019 - 16pp  
  Keywords  
  Abstract This paper explores the effects of changes in matter density profiles on neutrino oscillation probabilities, and whether these could potentially be seen by the future Hyper-Kamiokande long-baseline oscillation experiment (T2HK). The analysis is extended to include the possibility of having an additional detector in Korea (T2HKK). In both cases, we find that these effects will be immeasurable, as the magnitudes of the changes in the oscillation probabilities induced in all density profile scenarios considered here remain smaller than the estimated experimental sensitivity to the oscillation probabilities of each experiment, for both appearance and disappearance channels. Therefore, we conclude that using a constant density profile is sufficient for both the T2HK and T2HKK experiments.  
  Address [King, Stephen F.; Molina Sedgwick, Susana] Univ Southampton, Dept Phys & Astron, Southampton SO17 1BJ, Hants, England, Email: s.f.king@soton.ac.uk;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000527887200007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4380  
Permanent link to this record
 

 
Author Biswas, S. et al; Perez-Vidal, R.M.; Domingo-Pardo, C. url  doi
openurl 
  Title (up) Effects of one valence proton on seniority and angular momentum of neutrons in neutron-rich(51)( 122-)(131)Sb isotopes Type Journal Article
  Year 2019 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 99 Issue 6 Pages 064302 - 21pp  
  Keywords  
  Abstract Background: Levels fulfilling the seniority scheme and relevant isomers are commonly observed features in semimagic nuclei; for example, in Sn isotopes (Z = 50). Seniority isomers in Sn, with dominantly pure neutron configurations, directly probe the underlying neutron-neutron (vv) interaction. Furthermore, an addition of a valence proton particle or hole, through neutron-proton (v pi) interaction, affects the neutron seniority as well as the angular momentum. Purpose: Benchmark the reproducibility of the experimental observables, like the excitation energies (E-x) and the reduced electric-quadrupole transition probabilities [B(E2)], with the results obtained from shell-model interactions for neutron-rich Sn and Sb isotopes with N < 82. Study the sensitivity of the aforementioned experimental observables to the model interaction components. Furthermore, explore from a microscopic point of view the structural similarity between the isomers in Sn and Sb, and thus the importance of the valence proton. Methods: The neutron-rich Sb122-131 isotopes were produced as fission fragments in the reaction Be-9(U-238, f) with 6.2 MeV/u beam energy. A unique setup, consisting of AGATA, VAMOS++, and EXOGAM detectors, was used which enabled the prompt-delayed gamma-ray spectroscopy of fission fragments in the time range of 100 ns to 200 μs. Results: New isomers and prompt and delayed transitions were established in the even-A Sb122-131 isotopes. In the odd-A Sb122-131 isotopes, new prompt and delayed gamma-ray transitions were identified, in addition to the confirmation of the previously known isomers. The half-lives of the isomeric states and the B(E2) transition probabilities of the observed transitions depopulating these isomers were extracted. Conclusions: The experimental data was compared with the theoretical results obtained in the framework of large-scale shell-model (LSSM) calculations in a restricted model space. Modifications of several components of the shell-model interaction were introduced to obtain a consistent agreement with the excitation energies and the B(E2) transition probabilities in neutron-rich Sn and Sb isotopes. The isomeric configurations in Sn and Sb were found to be relatively pure. Furthermore, the calculations revealed that the presence of a single valence proton, mainly in the g(7/2) orbital in Sb isotopes, leads to significant mixing (due to the v pi interaction) of (i) the neutron seniorities (upsilon(v)) and (ii) the neutron angular momentum (I-v). The above features have a weak impact on the excitation energies, but have an important impact on the B(E2) transition probabilities. In addition, a constancy of the relative excitation energies irrespective of neutron seniority and neutron number in Sn and Sb was observed.  
  Address [Biswas, S.; Lemasson, A.; Rejmund, M.; Navin, A.; Kim, Y. H.; Michelagnoli, C.; Clement, E.; de France, G.; Fremont, G.; Goupil, J.; Jacquot, B.; Li, H. J.; Menager, A.; More, V; Ropert, J.; Lefevre, A.; Saillant, F.] CNRS, GANIL, CEA, IN2P3,DRF, Bd Henri Becquerel,BP 55027, F-14076 Caen 5, France, Email: biswas@ganil.fr;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000470856500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4051  
Permanent link to this record
 

 
Author Ikeno, N.; Ono, A.; Nara, Y.; Ohnishi, A. url  doi
openurl 
  Title (up) Effects of Pauli blocking on pion production in central collisions of neutron-rich nuclei Type Journal Article
  Year 2020 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 101 Issue 3 Pages 034607 - 9pp  
  Keywords  
  Abstract Pauli blocking is carefully investigated for the processes of NN <-> N Delta and Delta -> N pi in heavy-ion collisions, aiming at a more precise prediction of the pi(-)/pi(+) ratio which is an important observable to constrain the high-density symmetry energy. We use the AMD + JAM approach, which combines the antisymmetrized molecular dynamics for the time evolution of nucleons and the Jet AA Microscopic transport model to treat processes for Delta resonances and pions. As is known in general transport-code simulations, it is difficult to treat Pauli blocking very precisely due to unphysical fluctuations and additional smearing of the phase-space distribution function, when Pauli blocking is treated in the standard method of JAM. We propose an improved method in AMD + JAM to use the Wigner function precisely calculated in AMD as the blocking probability. Different Pauli blocking methods are compared in heavy-ion collisions of neutron-rich nuclei, Sn-132+Sn-124, at 270 MeV/nucleon. With the more accurate method, we find that Pauli blocking is stronger, in particular for the neutron in the final state in NN -> N Delta and Delta -> N pi, compared to the case with a proton in the final state. Consequently, the pi(-)/pi(+) ratio becomes higher when the Pauli blocking is improved, the effect of which is found to be comparable to the sensitivity to the high-density symmetry energy.  
  Address [Ikeno, Natsumi] Tottori Univ, Dept Agr Life & Environm Sci, Tottori 6808551, Japan  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000519701800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4327  
Permanent link to this record
 

 
Author Foffa, S.; Sturani, R.; Torres Bobadilla, W.J. url  doi
openurl 
  Title (up) Efficient resummation of high post-Newtonian contributions to the binding energy Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages 165 - 18pp  
  Keywords Classical Theories of Gravity; Black Holes; Effective Field Theories  
  Abstract A factorisation property of Feynman diagrams in the context the Effective Field Theory approach to the compact binary problem has been recently employed to efficiently determine the static sector of the potential at fifth post-Newtonian (5PN) order. We extend this procedure to the case of non-static diagrams and we use it to fix, by means of elementary algebraic manipulations, the value of more than one thousand diagrams at 5PN order, that is a substantial fraction of the diagrams needed to fully determine the dynamics at 5PN. This procedure addresses the redundancy problem that plagues the computation of the binding energy with respect to more “efficient” observables like the scattering angle, thus making the EFT approach in harmonic gauge at least as scalable as the others methods.  
  Address [Foffa, Stefano] Univ Geneva, Dept Phys Theor, CH-1211 Geneva, Switzerland, Email: stefano.foffa@unige.ch;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000621231300003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4740  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva