toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Colomer, M.; Corredoira, I; Gozzini, S.R.; Hernandez-Rey, J.J.; Khan Chowdhury, N.R.; Manczak, J.; Muñoz Perez, D.; Palacios Gonzalez, J.; Pieterse, C.; Real, D.; Salesa Greus, F.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. doi  openurl
  Title (up) Architecture and performance of the KM3NeT front-end firmware Type Journal Article
  Year 2021 Publication Journal of Astronomical Telescopes, Instruments and Systems Abbreviated Journal J. Astron. Telesc. Instrum. Syst.  
  Volume 7 Issue 1 Pages 016001 - 24pp  
  Keywords neutrino telescope; acquisition firmware; time to digital converters; KM3NeT  
  Abstract The KM3NeT infrastructure consists of two deep-sea neutrino telescopes being deployed in the Mediterranean Sea. The telescopes will detect extraterrestrial and atmospheric neutrinos by means of the incident photons induced by the passage of relativistic charged particles through the seawater as a consequence of a neutrino interaction. The telescopes are configured in a three-dimensional grid of digital optical modules, each hosting 31 photomultipliers. The photomultiplier signals produced by the incident Cherenkov photons are converted into digital information consisting of the integrated pulse duration and the time at which it surpasses a chosen threshold. The digitization is done by means of time to digital converters (TDCs) embedded in the field programmable gate array of the central logic board. Subsequently, a state machine formats the acquired data for its transmission to shore. We present the architecture and performance of the front-end firmware consisting of the TDCs and the state machine.  
  Address [Aiello, Sebastiano; Leonora, Emanuele; Longhitano, Fabio; Randazzo, Nunzio] Ist Nazl Fis Nucl, Sez Catania, Catania, Italy, Email: dacaldia@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Spie-Soc Photo-Optical Instrumentation Engineers Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2329-4124 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000636679100031 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4784  
Permanent link to this record
 

 
Author Plenter, J.; Rodrigo, G. url  doi
openurl 
  Title (up) Asymptotic expansions through the loop-tree duality Type Journal Article
  Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 81 Issue 4 Pages 320 - 13pp  
  Keywords  
  Abstract Asymptotic expansions of Feynman amplitudes in the loop-tree duality formalism are implemented at integrand-level in the Euclidean space of the loop three-momentum, where the hierarchies among internal and external scales are well-defined. The ultraviolet behaviour of the individual contributions to the asymptotic expansion emerges only in the first terms of the expansion and is renormalized locally in four space-time dimensions. These two properties represent an advantage over the method of Expansion by Regions. We explore different approaches in different kinematical limits, and derive explicit asymptotic expressions for several benchmark configurations.  
  Address [Plenter, Judith; Rodrigo, German] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient, Valencia 46980, Spain, Email: plenter@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000641475900003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4810  
Permanent link to this record
 

 
Author Sierra, D.A.; De Romeri, V.; Flores, L.J.; Papoulias, D.K. url  doi
openurl 
  Title (up) Axionlike particles searches in reactor experiments Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 294 - 38pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract Reactor neutrino experiments provide a rich environment for the study of axionlike particles (ALPs). Using the intense photon flux produced in the nuclear reactor core, these experiments have the potential to probe ALPs with masses below 10MeV. We explore the feasibility of these searches by considering ALPs produced through Primakoff and Compton-like processes as well as nuclear transitions. These particles can subsequently interact with the material of a nearby detector via inverse Primakoff and inverse Compton-like scatterings, via axio-electric absorption, or they can decay into photon or electron-positron pairs. We demonstrate that reactor-based neutrino experiments have a high potential to test ALP-photon couplings and masses, currently probed only by cosmological and astrophysical observations, thus providing complementary laboratory-based searches. We furthermore show how reactor facilities will be able to test previously unexplored regions in the similar to MeV ALP mass range and ALP-electron couplings of the order of gaee similar to 10(-8) as well as ALP-nucleon couplings of the order of g (1) ann similar to 10(-9), testing regions beyond TEXONO and Borexino limits.  
  Address [Aristizabal Sierra, D.] Univ Tecn Federico Santa Maria, Dept Fis, Casilla 110-V,Avda Espa 1680, Valparaiso, Chile, Email: daristizabal@ulg.ac.be;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000636459500005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4793  
Permanent link to this record
 

 
Author Watanabe, H.; Watanabe, Y.X.; Hirayama, Y.; Andreyev, A.N.; Hashimoto, T.; Kondev, F.G.; Lane, G.J.; Litvinov, Y.A.; Liu, J.J.; Miyatake, H.; Moon, J.Y.; Morales, A.I.; Mukai, M.; Nishimura, S.; Niwase, T.; Rosenbusch, M.; Schury, P.; Shi, Y.; Wada, M.; Walker, P.M. doi  openurl
  Title (up) Beta decay of the axially asymmetric ground state of Re-192 Type Journal Article
  Year 2021 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 814 Issue Pages 136088 - 6pp  
  Keywords Re-192; beta decay; Axial asymmetry; Shape transition  
  Abstract The beta decay of Re-192(75)117, which lies near the boundary between the regions of predicted prolate and oblate deformations, has been investigated using the KEK Isotope Separation System (KISS) in RIKEN Nishina Center. This is the first case in which a low-energy beam of rhenium isotope has been successfully extracted from an argon gas-stopping cell using a laser-ionization technique, following production via multi-nucleon transfer between heavy ions. The ground state of Re-192 has been assigned J(pi) = (0(-)) based on the observed beta feedings and deduced logf t values towards the 0(+) and 2(+) states in Os-192, which is known as a typical gamma-soft nucleus. The shape transition from axial symmetry to axial asymmetry in the Re isotopes is discussed from the viewpoint of single-particle structure using the nuclear Skyrme-Hartree-Fock model.  
  Address [Watanabe, H.] Beihang Univ, Sch Phys, Beijing 100191, Peoples R China, Email: hiroshi@ribf.riken.jp  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000621722300008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4747  
Permanent link to this record
 

 
Author Orrigo, S.E A. et al; Rubio, B.; Gelletly, W.; Aguilera, P.; Algora, A.; Morales, A.I.; Agramunt, J.; Guadilla, V.; Montaner-Piza, A. url  doi
openurl 
  Title (up) beta decay of the very neutron-deficient Ge-60 and Ge-62 nuclei Type Journal Article
  Year 2021 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 103 Issue 1 Pages 014324 - 12pp  
  Keywords  
  Abstract We report here the results of a study of the beta decay of the proton-rich Ge isotopes, Ge-60 and Ge-62, produced in an experiment at the RIKEN Nishina Center. We have improved our knowledge of the half-lives of Ge-62 [73.5(1) ms] and Ge-60 [25.0(3) ms] and its daughter nucleus, Ga-60 [69.4(2) ms]. We measured individual beta-delayed proton and gamma emissions and their related branching ratios. Decay schemes and absolute Fermi and Gamow-Teller transition strengths have been determined. The mass excesses of the nuclei under study have been deduced. A total beta-delayed proton-emission branching ratio of 67(3)% has been obtained for Ge-60. New information has been obtained on the energy levels populated in Ga-60 and on the 1/2(-) excited state in the beta p daughter Zn-59. We extracted a ground state-to-ground state feeding of 85.3(3)% for the decay of Ge-62. Eight new y lines have been added to the deexcitation of levels populated in the Ga-62 daughter.  
  Address [Orrigo, S. E. A.; Rubio, B.; Gelletly, W.; Aguilera, P.; Algora, A.; Morales, A., I; Agramunt, J.; Guadilla, V; Montaner-Piza, A.] Univ Valencia, Inst Fis Corpuscular, CSIC, E-46071 Valencia, Spain, Email: sonja.orrigo@ific.uv.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000613141500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4716  
Permanent link to this record
 

 
Author Gombas, J.; DeYoung, P.A.; Spyrou, A.; Dombos, A.C.; Algora, A.; Baumann, T.; Crider, B.; Engel, J.; Ginter, T.; Kwan, E.; Liddick, S.N.; Lyons, S.; Naqvi, F.; Ney, E.M.; Pereira, J.; Prokop, C.; Ong, W.; Quinn, S.; Scriven, D.P.; Simon, A.; Sumithrarachchi, C. doi  openurl
  Title (up) beta-decay feeding intensity distributions for Nb-103,Nb-104m Type Journal Article
  Year 2021 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 103 Issue 3 Pages 035803 - 8pp  
  Keywords  
  Abstract The beta decays of Nb-103,Nb-104m were studied with the Summing NaI(Tl) (SuN) detector at the National Superconducting Cyclotron Laboratory. The beta-decay feeding intensity distribution I-beta(E) for each isotope was extracted by measuring gamma rays in coincidence with an emitted electron. The I-beta(E) was extracted via the total absorption spectroscopy technique. The I-beta(E) for each nucleus was compared to predictions made by the quasiparticle random-phase approximation (QRPA) model which is commonly used to calculate beta-decay properties for astrophysical applications. The main goal was to provide experimental data for neutron-rich nuclei, relevant to the astrophysical r process. In addition, the extracted beta-decay feeding intensity distributions can lead to a better understanding of nuclear structure in a region of rapid structure changes around A = 100. Finally, experimental data for Nb-104m are also of interest to antineutrino studies of nuclear reactors.  
  Address [Gombas, J.; DeYoung, P. A.] Hope Coll, Dept Phys, Holland, MI 49422 USA, Email: gombasja@msu.edu;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000627565600005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4765  
Permanent link to this record
 

 
Author Algora, A.; Tain, J.L.; Rubio, B.; Fallot, M.; Gelletly, W. url  doi
openurl 
  Title (up) Beta-decay studies for applied and basic nuclear physics Type Journal Article
  Year 2021 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A  
  Volume 57 Issue 3 Pages 85 - 28pp  
  Keywords  
  Abstract In this reviewwe will present the results of recent beta-decay studies using the total absorption technique that cover topics of interest for applications, nuclear structure and astrophysics. The decays studied were selected primarily because they have a large impact on the prediction of (a) the decay heat in reactors, important for the safety of present and future reactors and (b) the reactor electron anti-neutrino spectrum, of interest for particle/nuclear physics and reactor monitoring. For these studies the total absorption technique was chosen, since it is the only method that allows one to obtain beta-decay probabilities free from a systematic error called the Pandemonium effect. The total absorption technique is based on the detection of the. cascades that follow the initial beta decay. For this reason the technique requires the use of calorimeters with very high. detection efficiency. The measurements presented and discussed here were performed mainly at the IGISOL facility of the University of Jyvaskyla (Finland) using isotopically pure beams provided by the JYFLTRAP Penning trap. Examples are presented to show that the results of our measurements on selected nuclei have had a large impact on predictions of both the decay heat and the anti-neutrino spectrum from reactors. Some of the cases involve beta-delayed neutron emission thus one can study the competition between gamma – and neutron-emission from states above the neutron separation energy. The gamma-to-neutron emission ratios can be used to constrain neutron capture (n, gamma) cross sections for unstable nuclei of interest in astrophysics. The information obtained from the measurements can also be used to test nuclear model predictions of half-lives and Pn values for decays of interest in astrophysical network calculations. These comparisons also provide insights into aspects of nuclear structure in particular regions of the nuclear chart.  
  Address [Algora, A.; Tain, J. L.; Rubio, B.] Univ Valencia, CSIC, IFIC, Paterna, Spain, Email: algora@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6001 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000625127600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4754  
Permanent link to this record
 

 
Author Hall, O. et al; Agramunt, J.; Algora, A.; Domingo-Pardo, C.; Morales, A.I.; Rubio, B.; Tain, J.L.; Tolosa-Delgado, A. doi  openurl
  Title (up) beta-delayed neutron emission of r-process nuclei at the N=82 shell closure Type Journal Article
  Year 2021 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 816 Issue Pages 136266 - 7pp  
  Keywords beta-delayed neutron emission; r-processimportant  
  Abstract Theoretical models of beta-delayed neutron emission are used as crucial inputs in r-process calculations. Benchmarking the predictions of these models is a challenge due to a lack of currently available experimental data. In this work the beta-delayed neutron emission probabilities of 33 nuclides in the important mass regions south and south-west of Sn-132 are presented, 16 for the first time. The measurements were performed at RIKEN using the Advanced Implantation Detector Array (AIDA) and the BRIKEN neutron detector array. The P-1n values presented constrain the predictions of theoretical models in the region, affecting the final abundance distribution of the second r-process peak at A approximate to 130.  
  Address [Hall, O.; Davinson, T.; Bruno, C. G.; Griffin, C. J.; Kahl, D.] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3FD, Midlothian, Scotland, Email: oscar.hall@ed.ac.uk  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000647421500016 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4819  
Permanent link to this record
 

 
Author Bombacigno, F.; Boudet, S.; Olmo, G.J.; Montani, G. url  doi
openurl 
  Title (up) Big bounce and future time singularity resolution in Bianchi I cosmologies: The projective invariant Nieh-Yan case Type Journal Article
  Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 103 Issue 12 Pages 124031  
  Keywords  
  Abstract We extend the notion of the Nieh-Yan invariant to generic metric-affine geometries, where both torsion and nonmetricity are taken into account. Notably, we show that the properties of projective invariance and topologicity can be independently accommodated by a suitable choice of the parameters featuring this new Nieh-Yan term. We then consider a special class of modified theories of gravity able to promote the Immirzi parameter to a dynamical scalar field coupled to the Nieh-Yan form, and we discuss in more detail the dynamics of the effective scalar tensor theory stemming from such a revised theoretical framework. We focus, in particular, on cosmological Bianchi I models and we derive classical solutions where the initial singularity is safely removed in favor of a big bounce, which is ultimately driven by the nonminimal coupling with the Immirzi field. These solutions, moreover, turn out to be characterized by finite time singularities, but we show that such critical points do not spoil the geodesic completeness and wave regularity of these spacetimes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000661819200005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4870  
Permanent link to this record
 

 
Author NEXT Collaboration (Simon, A. et al); Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Lopez-March, N.; Martin-Albo, J.; Martinez, A.; Martinez-Vara, M.; Muñoz Vidal, J.; Novella, P.; Palmeiro, B.; Querol, M.; Renner, J.; Romo-Luque, C.; Sorel, M.; Uson, A.; Yahlali, N. url  doi
openurl 
  Title (up) Boosting background suppression in the NEXT experiment through Richardson-Lucy deconvolution Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 146 - 38pp  
  Keywords Dark Matter and Double Beta Decay (experiments)  
  Abstract Next-generation neutrinoless double beta decay experiments aim for half-life sensitivities of similar to 10(27) yr, requiring suppressing backgrounds to < 1 count/tonne/yr. For this, any extra background rejection handle, beyond excellent energy resolution and the use of extremely radiopure materials, is of utmost importance. The NEXT experiment exploits differences in the spatial ionization patterns of double beta decay and single-electron events to discriminate signal from background. While the former display two Bragg peak dense ionization regions at the opposite ends of the track, the latter typically have only one such feature. Thus, comparing the energies at the track extremes provides an additional rejection tool. The unique combination of the topology-based background discrimination and excellent energy resolution (1% FWHM at the Q-value of the decay) is the distinguishing feature of NEXT. Previous studies demonstrated a topological background rejection factor of <similar to> 5 when reconstructing electron-positron pairs in the Tl-208 1.6 MeV double escape peak (with Compton events as background), recorded in the NEXT-White demonstrator at the Laboratorio Subterraneo de Canfranc, with 72% signal efficiency. This was recently improved through the use of a deep convolutional neural network to yield a background rejection factor of similar to 10 with 65% signal efficiency. Here, we present a new reconstruction method, based on the Richardson-Lucy deconvolution algorithm, which allows reversing the blurring induced by electron diffusion and electroluminescence light production in the NEXT TPC. The new method yields highly refined 3D images of reconstructed events, and, as a result, significantly improves the topological background discrimination. When applied to real-data 1.6 MeV e(-)e(+) pairs, it leads to a background rejection factor of 27 at 57% signal efficiency.  
  Address [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA, Email: ander@post.bgu.ac.il;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000677621700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4906  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva