|   | 
Details
   web
Records
Author NEXT Collaboration (Simon, A. et al); Felkai, R.; Martinez-Lema, G.; Sorel, M.; Gomez-Cadenas, J.J.; Alvarez, V.; Benlloch-Rodriguez, J.M.; Botas, A.; Carcel, S.; Carrion, J.V.; Diaz, J.; Ferrario, P.; Kekic, M.; Laing, A.; Lopez-March, N.; Martinez, A.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Perez, J.; Querol, M.; Renner, J.; Rodriguez, J.; Romo Luque, C.; Torrent, J.; Yahlali, N.
Title (down) Electron drift properties in high pressure gaseous xenon Type Journal Article
Year 2018 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 13 Issue Pages P07013 - 23pp
Keywords Charge transport and multiplication in gas; Charge transport, multiplication and electroluminescence in rare gases and liquids; Double-beta decay detectors; Gaseous imaging and tracking detectors
Abstract Gaseous time projection chambers (TPC) are a very attractive detector technology for particle tracking. Characterization of both drift velocity and diffusion is of great importance to correctly assess their tracking capabilities. NEXT-White is a High Pressure Xenon gas TPC with electroluminescent amplification, a 1:2 scale model of the future NEXT-100 detector, which will be dedicated to neutrinoless double beta decay searches. NEXT-White has been operating at Canfranc Underground Laboratory (LSC) since December 2016. The drift parameters have been measured using Kr-83(m) for a range of reduced drift fields at two different pressure regimes, namely 7.2 bar and 9.1 bar. The results have been compared with Magboltz simulations. Agreement at the 5% level or better has been found for drift velocity, longitudinal diffusion and transverse diffusion.
Address [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, 12 Phys Hall, Ames, IA 50011 USA, Email: ander@post.bgu.ac.il
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000439125700006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3671
Permanent link to this record
 

 
Author NEXT Collaboration (McDonald, A.D. et al); Alvarez, V.; Benlloch-Rodriguez, J.M.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Herrero, P.; Kekic, M.; Lopez-March, N.; Martinez-Lema, G.; Muñoz Vidal, J.; Novella, P.; Palmeiro, B.; Perez, J.; Querol, M.; Renner, J.; Romo-Luque, C.; Sorel, M.; Uson, A.; Yahlali, N.
Title (down) Electron drift and longitudinal diffusion in high pressure xenon-helium gas mixtures Type Journal Article
Year 2019 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 14 Issue Pages P08009 - 19pp
Keywords Charge transport and multiplication in gas; Gaseous imaging and tracking detectors
Abstract We report new measurements of the drift velocity and longitudinal diffusion coefficients of electrons in pure xenon gas and in xenon-helium gas mixtures at 1-9 bar and electric field strengths of 50-300 V/cm. In pure xenon we find excellent agreement with world data at all E/P, for both drift velocity and diffusion coefficients. However, a larger value of the longitudinal diffusion coefficient than theoretical predictions is found at low E/P in pure xenon, below the range of reduced fields usually probed by TPC experiments. A similar effect is observed in xenon-helium gas mixtures at somewhat larger E/P. Drift velocities in xenon-helium mixtures are found to be theoretically well predicted. Although longitudinal diffusion in xenon-helium mixtures is found to be larger than anticipated, extrapolation based on the measured longitudinal diffusion coefficients suggest that the use of helium additives to reduce transverse diffusion in xenon gas remains a promising prospect.
Address [McDonald, A. D.; Woodruff, K.; Al Atoum, B.; Jones, B. J. P.; Laing, A.; Nygren, D. R.; Rogers, L.] Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA, Email: austin.mcdonald@uta.edu
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000482373600006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4118
Permanent link to this record
 

 
Author Llosa, G.; Barrio, J.; Cabello, J.; Crespo, A.; Lacasta, C.; Rafecas, M.; Callier, S.; de la Taille, C.; Raux, L.
Title (down) Detector characterization and first coincidence tests of a Compton telescope based on LaBr3 crystals and SiPMs Type Journal Article
Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 695 Issue Pages 105-108
Keywords Hadron therapy; Compton imaging; LaBr3; Continuous crystal; SiPM; MPPC; G-APD
Abstract A Compton telescope for dose monitoring in hadron therapy consisting of several layers of continuous LaBr3 crystals coupled to silicon photomultiplier (SiPM) arrays is under development within the ENVISION project. In order to test the possibility of employing such detectors for the telescope, a detector head consisting of a continuous 16 mm x 18 mm x 5 mm LaBr3 crystal coupled to a SiPM array has been assembled and characterized, employing the SPIROC1 ASIC as readout electronics. The best energy resolution obtained at 511 key is 6.5% FWHM and the timing resolution is 3.1 ns FWHM. A position determination method for continuous crystals is being tested, with promising results. In addition, the detector has been operated in time coincidence with a second detector layer, to determine the coincidence capabilities of the system. The first tests are satisfactory, and encourage the development of larger detectors that will compose the telescope prototype.
Address [Llosa, G.; Barrio, J.; Cabello, J.; Crespo, A.; Lacasta, C.; Rafecas, M.] UVEG, CSIC, IFIC, Inst Fis Corpuscular, Valencia, Spain, Email: gabriela.llosa@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000311469900020 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1235
Permanent link to this record
 

 
Author NEXT Collaboration (Alvarez, V. et al); Ball, M.; Carcel, S.; Cervera-Villanueva, A.; Diaz, J.; Ferrario, P.; Gil, A.; Gomez-Cadenas, J.J.; Laing, A.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Muñoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.
Title (down) Design and characterization of the SiPM tracking system of NEXT-DEMO, a demonstrator prototype of the NEXT-100 experiment Type Journal Article
Year 2013 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 8 Issue Pages T05002 - 18pp
Keywords Time projection Chambers (TPC); Gaseous imaging and tracking detectors; Photon detectors for UV; visible and IR photons (solid-state); Particle tracking detectors (Solid-state detectors)
Abstract NEXT-100 experiment aims at searching the neutrinoless double-beta decay of the Xe-136 isotope using a TPC filled with a 100 kg of high-pressure gaseous xenon, with 90% isotopic enrichment. The experiment will take place at the Laboratorio Subterraneo de Canfranc (LSC), Spain. NEXT-100 uses electroluminescence (EL) technology for energy measurement with a resolution better than 1% FWHM. The gaseous xenon in the TPC additionally allows the tracks of the two beta particles to be recorded, which are expected to have a length of up to 30 cm at 10 bar pressure. The ability to record the topological signature of the beta beta 0 nu events provides a powerful background rejection factor for the beta beta experiment. In this paper, we present a novel 3D imaging concept using SiPMs coated with tetraphenyl butadiene (TPB) for the EL read out and its first implementation in NEXT-DEMO, a large-scale prototype of the NEXT-100 experiment. The design and the first characterization measurements of the NEXT-DEMO SiPM tracking system are presented. The SiPM response uniformity over the tracking plane drawn from its gain map is shown to be better than 4%. An automated active control system for the stabilization of the SiPMs gain was developed, based on the voltage supply compensation of the gain drifts. The gain is shown to be stabilized within 0.2% relative variation around its nominal value, provided by Hamamatsu, in a temperature range of 10 degrees C. The noise level from the electronics and the SiPM dark noise is shown to lay typically below the level of 10 photoelectrons (pe) in the ADC. Hence, a detection threshold at 10 pe is set for the acquisition of the tracking signals. The ADC full dynamic range (4096 channels) is shown to be adequate for signal levels of up to 200 pe/mu s, which enables recording most of the tracking signals.
Address [Alvarez, V.; Ball, M.; Carcel, S.; Cervera, A.; Diaz, J.; Ferrario, P.; Gil, A.; Gomez-Cadenas, J. J.; Laing, A.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Munoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.] CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain, Email: gomez@mail.cern.ch;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000320726000037 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1514
Permanent link to this record
 

 
Author Albiol, F.; Corbi, A.; Albiol, A.
Title (down) Densitometric Radiographic Imaging With Contour Sensors Type Journal Article
Year 2019 Publication IEEE Access Abbreviated Journal IEEE Access
Volume 7 Issue Pages 18902-18914
Keywords Conventional X-ray imaging; contour data; densitometric images; dynamic range; depth information
Abstract We present the technical/physical foundations of a new imaging technique that combines ordinary radiographic information (generated by conventional X-ray settings) with the patient's volume to derive densitometric images. Traditionally, these images provide quantitative information about tissues densities. In our approach, they graphically enhance either soft or bony regions. After measuring the patient's volume with contour recognition devices, the physical traversed lengths within it (as the Roentgen beam intersects the patient) are calculated and pixel-wise associated with the original radiograph (X). In order to derive this map of lengths (L), the camera equations of the X-ray system and the contour sensor are determined. The patient's surface is also translated to the point-of-view of the X-ray beam and all its entrance/exit points are sought with the help of ray-casting methods. The derived L is applied to X as a physical operation (subtraction), obtaining soft tissue-(D-S) or bone-enhanced (D'(B)) figures. In the D-S type, the contained graphical information can be linearly mapped to the average electronic density (traversed by the X-ray beam). This feature represents an interesting proof-of-concept of associating density data to radiographs, but most important, their intensity histogram is objectively compressed, i.e., the dynamic range is more shrunk (compared against the corresponding X). This leads to other advantages: improvement in the visibility of border/edge areas (high gradient), extended manual window level/width manipulations during screening, and immediate correction of underexposed X instances. In the D-B' type, high-density elements are highlighted and easier to discern. All these results can be achieved with low-energy beam exposures, saving costs and dose. Future work will deepen this clinical side of our research. In contrast with other image-based modifiers, the proposed method is grounded on the measurement of a physical entity: the span of the X-ray beam within a body while undertaking a radiographic examination.
Address [Albiol, Francisco; Corbi, Alberto] CSIC, Inst Fis Corpuscular, Paterna 46980, Spain, Email: kiko@ific.uv.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-3536 ISBN Medium
Area Expedition Conference
Notes WOS:000459591800001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3920
Permanent link to this record