toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author LHCb Collaboration (Aaij, R. et al); Garcia Martin, L.M.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Valls, P.; Sanchez Mayordomo, C. url  doi
openurl 
  Title (up) Differential branching fraction and angular moments analysis of the decay B-0 -> K+pi(-)mu(+)mu(-) in the K-0,K-2*(1431:)(0) region Type Journal Article
  Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue 12 Pages 065 - 24pp  
  Keywords FCNC Interaction; Flavor physics; B physics; Rare decay; Hadron-Hadron scattering (experiments)  
  Abstract Measurements of the differential branching fraction and angular moments of the decay B-0 -> K+pi(-)mu(+)mu(-) in the K+pi(-) invariant mass range 1330 <m(K+pi(-)) < 1530 MeV/c(2) are presented. Proton-proton collision data are used, corresponding to an integrated luminosity of 3 fb(-1) collected by the LHCb experiment. Differential branching fraction measurements are reported in five bins of the invariant mass squared of the dimuon system, q(2), between 0.1 and 8.0 GeV2/c(4). For the first time, an angular analysis sensitive to the S-, P- and D-wave contributions of this rare decay is performed. The set of 40 normalised angular moments describing the decay is presented for the q(2) range 1.1-6.0 GeV2/c(4).  
  Address [Bediagal, I.; De Miranda, J. M.; Rodrigues, F. Ferreira; Gomes, A.; Massafferri, A.; dos Reis, A. C.; Rodriguesl, A. B.; Vieiral, D.] CBPF, Rio De Janeiro, Brazil  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000399444000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3081  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Martinez-Vidal, F.; Oyanguren, A.; Ruiz Valls, P.; Sanchez Mayordomo, C. url  doi
openurl 
  Title (up) Differential branching fractions and isospin asymmetries of B -> K ((*)) μ(+) μ(-) decays Type Journal Article
  Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue 6 Pages 133 - 22pp  
  Keywords Rare decay; Branching fraction; B physics; Flavour Changing Neutral Currents; Hadron-Hadron Scattering  
  Abstract The isospin asymmetries of B -> K μ(+) μ(-) and B -> K (*) μ(+) μ(-) decays and the partial branching fractions of the B (0) -> K (0) μ(+) μ(-), B (+) -> K (+) μ(+) μ(-) and B (+) -> K (*+) μ(+) μ(-) decays are measured as functions of the dimuon mass squared, q (2). The data used correspond to an integrated luminosity of 3 fb(-1) from proton-proton collisions collected with the LHCb detector at centre-of-mass energies of 7 TeV and 8 TeV in 2011 and 2012, respectively. The isospin asymmetries are both consistent with the Standard Model expectations. The three measured branching fractions favour lower values than their respective theoretical predictions, however they are all individually consistent with the Standard Model.  
  Address [Bediaga, I.; De Miranda, J. M.; Ferreira Rodrigues, F.; Gomes, A.; Hicheur, A.; Massafferri, A.; dos Reis, A. C.; Rodrigues, A. B.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000338448800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1833  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Amos, K.R.; Aparisi Pozo, J.A.; Bailey, A.J.; Cabrera Urban, S.; Cantero, J.; Cardillo, F.; Castillo Gimenez, V.; Costa, M.J.; Didenko,, M.; Escobar, C.; Estrada Pastor, O.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Mamuzic, J.; Marti-Garcia, S.; Martinez Agullo, P.; Miralles Lopez, M.; Mitsou, V.A.; Monsonis Romero, L.; Moreno Llacer, M.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Ruiz-Martinez, A.; Sabatini, P.; Salt, J.; Sanchez Sebastian, V.; Sayago Galvan, I.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M. url  doi
openurl 
  Title (up) Differential t(t)over-tilde cross-section measurements using boosted top quarks in the all-hadronic final state with 139 fb(-1) of ATLAS data Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 04 Issue 4 Pages 080 - 108pp  
  Keywords Hadron-Hadron Scattering; Jet Substructure and Boosted Jets; Top Physics  
  Abstract Measurements of single-, double-, and triple-differential cross-sections are presented for boosted top-quark pair-production in 13 TeV proton-proton collisions recorded by the ATLAS detector at the LHC. The top quarks are observed through their hadronic decay and reconstructed as large-radius jets with the leading jet having transverse momentum (p(T)) greater than 500 GeV. The observed data are unfolded to remove detector effects. The particle-level cross-section, multiplied by the t (t) over bar branching fraction and measured in a fiducial phase space defined by requiring the leading and second-leading jets to have p(T)> 500 GeV and p(T)> 350 GeV, respectively, is 331 +/- 3(stat.) +/- 39(syst.) fb. This is approximately 20% lower than the prediction of 398(-49)(+48) fb by Powheg+Pythia 8 with next-to-leading-order (NLO) accuracy but consistent within the theoretical uncertainties. Results are also presented at the parton level, where the effects of top-quark decay, parton showering, and hadronization are removed such that they can be compared with fixed-order next-to-next-to-leading-order (NNLO) calculations. The parton-level cross-section, measured in a fiducial phase space similar to that at particle level, is 1.94 +/- 0.02(stat.) +/- 0.25(syst.) pb. This agrees with the NNLO prediction of 1.96(-0.17)(+0.02) pb. Reasonable agreement with the differential cross-sections is found for most NLO models, while the NNLO calculations are generally in better agreement with the data. The differential cross-sections are interpreted using a Standard Model effective field-theory formalism and limits are set on Wilson coefficients of several four-fermion operators.  
  Address [Filmer, E. K.; Jackson, P.; Kong, A. X. Y.; Potti, H.; Ruggeri, T. A.; Sharma, A. S.; Ting, E. X. L.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001022682600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5650  
Permanent link to this record
 

 
Author Egea Canet, F.J. et al; Gadea, A.; Huyuk, T. doi  openurl
  Title (up) Digital Front-End Electronics for the Neutron Detector NEDA Type Journal Article
  Year 2015 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.  
  Volume 62 Issue 3 Pages 1063-1069  
  Keywords Digital systems; front-end electronics; neutron detectors; neutron-gamma discrimination  
  Abstract This paper presents the design of the NEDA (Neutron Detector Array) electronics, a first attempt to involve the use of digital electronics in large neutron detector arrays. Starting from the front-end modules attached to the PMTs (PhotoMultiplier Tubes) and ending up with the data processing workstations, a comprehensive electronic system capable of dealing with the acquisition and pre-processing of the neutron array is detailed. Among the electronic modules required, we emphasize the front-end analog processing, the digitalization, digital pre-processing and communications firmware, as well as the integration of the GTS (Global Trigger and Synchronization) system, already used successfully in AGATA (Advanced Gamma Tracking Array). The NEDA array will be available for measurements in 2016.  
  Address [Egea Canet, F. J.; Gonzalez, V.; Sanchis, E.] Univ Valencia, Dept Elect Engn, Escola Tecn Super Engn, Valencia, Spain, Email: jaegea@ific.uv.es  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9499 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000356458000029 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2279  
Permanent link to this record
 

 
Author Mengoni, D.; Duenas, J.A.; Assie, M.; Boiano, C.; John, P.R.; Aliaga, R.J.; Beaumel, D.; Capra, S.; Gadea, A.; Gonzales, V.; Gottardo, A.; Grassi, L.; Herrero-Bosch, V.; Houdy, T.; Martel, I.; Parkar, V.V.; Perez-Vidal, R.M.; Pullia, A.; Sanchis, E.; Triossi, A.; Valiente-Dobon, J.J. doi  openurl
  Title (up) Digital pulse-shape analysis with a TRACE early silicon prototype Type Journal Article
  Year 2014 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 764 Issue Pages 241-246  
  Keywords Silicon detector; Light-charged particles; Digital pulse shape analysis; Particle identification; Gamma-ray spectroscopy  
  Abstract A highly segmented silicon-pad detector prototype has been tested to explore the performance of the digital pulse shape analysis in the discrimination of the particles reaching the silicon detector. For the first time a 200 tun thin silicon detector, grown using an ordinary floating zone technique, has been shown to exhibit a level discrimination thanks to the fine segmentation. Light-charged particles down to few MeV have been separated, including their punch-through. A coaxial HPGe detector in time coincidence has further confirmed the quality of the particle discrimination.  
  Address [Mengoni, D.; John, P. R.; Grassi, L.] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000341987000030 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1929  
Permanent link to this record
 

 
Author Modamio, V.; Valiente-Dobon, J.J.; Jaworski, G.; Huyuk, T.; Triossi, A.; Egea, J.; Di Nitto, A.; Soderstrom, P.A.; Ros, J.A.; de Angelis, G.; de France, G.; Erduran, M.N.; Erturk, S.; Gadea, A.; Gonzalez, V.; Kownacki, J.; Moszynski, M.; Nyberg, J.; Palacz, M.; Sanchis, E.; Wadsworthm, R. doi  openurl
  Title (up) Digital pulse-timing technique for the neutron detector array NEDA Type Journal Article
  Year 2015 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 775 Issue Pages 71-76  
  Keywords Digital timing; Constant fraction discriminator; Liquid scintillator; BC501A; Neutron detector; NEDA  
  Abstract A new digital pulse-timing algorithm, to be used with the future neutron detector array NEDA, has been developed and tested. The time resolution of four 5 in diameter photomultiplier tubes (XP4512, R4144, R11833-100, and ET9390-kb), coupled to a cylindrical 5 in by 5 in BC501A liquict scintillator detector was measured by employing digital sampling electronics and a constant fraction discriminator (CFD) algorithm. The zero crossing of the CM algorithm was obtained with a cubic spline interpolation, which was continuous up to the second derivative. The performance of the algorithm was studied at sampling rates of 500 MS/s and 200 MS/s. The time resolution obtained with the digital electronics was compared to the values acquired with a standard analog CFD. The result of this comparison shows that the time resolution from the analog and the digital measurements at 500 MS/s and at 200 MS/s are within 15% for all the tested photomultiplier tubes.  
  Address [Modamio, V.; Valiente-Dobon, J. J.; Triossi, A.; de Angelis, G.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy, Email: victor.modamio@lnl.infn.it  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000348040900011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2093  
Permanent link to this record
 

 
Author Ferrando Solera, S.; Pich, A.; Vale Silva, L. url  doi
openurl 
  Title (up) Direct bounds on Left-Right gauge boson masses at LHC Run 2 Type Journal Article
  Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages 027 - 39pp  
  Keywords Left-Right Models; Grand Unification; New Gauge Interactions  
  Abstract While the third run of the Large Hadron Collider (LHC) is ongoing, the underlying theory that extends the Standard Model remains so far unknown. Left-Right Models (LRMs) introduce a new gauge sector, and can restore parity symmetry at high enough energies. If LRMs are indeed realized in nature, the mediators of the new weak force can be searched for in colliders via their direct production. We recast existing experimental limits from the LHC Run 2 and derive generic bounds on the masses of the heavy LRM gauge bosons. As a novelty, we discuss the dependence of the WR and ZR total width on the LRM scalar content, obtaining model-independent bounds within the specific realizations of the LRM scalar sectors analysed here. These bounds avoid the need to detail the spectrum of the scalar sector, and apply in the general case where no discrete symmetry is enforced. Moreover, we emphasize the impact on the WR production at LHC of general textures of the right-handed quark mixing matrix without manifest left-right symmetry. We find that the WR and ZR masses are constrained to lie above 2 TeV and 4 TeV, respectively.  
  Address [Solera, Sergio Ferrando; Pich, Antonio; Silva, Luiz Vale] Univ Valencia, Consejo Super Invest Cient, Dept Fis Teor, Inst Fis Corpuscular, Parc Cient,Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: Sergio.Ferrando@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001156665600003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5928  
Permanent link to this record
 

 
Author Bernabeu, J.; Di Domenico, A.; Villanueva-Perez, P. url  doi
openurl 
  Title (up) Direct test of time reversal symmetry in the entangled neutral kaon system at a phi-factory Type Journal Article
  Year 2013 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B  
  Volume 868 Issue 1 Pages 102-119  
  Keywords Time reversal violation; Discrete symmetries; Neutral kaons; phi-Factory  
  Abstract We present a novel method to perform a direct T (time reversal) symmetry test in the neutral kaon system, independent of any CP and/or CPT symmetry tests. This is based on the comparison of suitable transition probabilities, where the required interchange of in <-> out states for a given process is obtained exploiting the Einstein-Podolski-Rosen correlations of neutral kaon pairs produced at a phi-factory. In the time distribution between the two decays, we compare a reference transition like the one defined by the time-ordered decays (l(-), pi pi) with the T-conjugated one defined by (3 pi(0), l(+)). With the use of this and other T-conjugated comparisons, the KLOE-2 experiment at DA Phi NE could make a statistically significant test.  
  Address [Bernabeu, J.; Villanueva-Perez, P.] Univ Valencia, Dept Theoret Phys, Valencia, Spain, Email: jose.bernabeu@uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0550-3213 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000314194800006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1320  
Permanent link to this record
 

 
Author Wimmer, K. et al; Algora, A.; Rubio, B. url  doi
openurl 
  Title (up) Discovery of Br-68 in secondary reactions of radioactive beams Type Journal Article
  Year 2019 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 795 Issue Pages 266-270  
  Keywords Radioactive beams; New isotope; Direct reaction  
  Abstract The proton-rich isotope Br-68 was discovered in secondary fragmentation reactions of fast radioactive beams. Proton-rich secondary beams of (70,71,72) Kr and Br-70, produced at the RIKEN Nishina Center and identified by the BigRIPS fragment separator, impinged on a secondary Be-9 target. Unambiguous particle identification behind the secondary target was achieved with the ZeroDegree spectrometer. Based on the expected direct production cross sections from neighboring isotopes, the lifetime of the ground or long-lived isomeric state of Br-68 was estimated. The results suggest that secondary fragmentation reactions, where relatively few nucleons are removed from the projectile, offer an alternative way to search for new isotopes, as these reactions populate preferentially low-lying states.  
  Address [Wimmer, K.; Ando, T.; Koyama, S.; Nagamine, S.; Niikura, M.; Saito, Ty; Sakurai, H.; Taniuchi, R.] Univ Tokyo, Dept Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan, Email: wimmer@phys.s.u-tokyo.ac.jp  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000477924000037 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4100  
Permanent link to this record
 

 
Author Vagnozzi, S.; Visinelli, L.; Mena, O.; Mota, D.F. url  doi
openurl 
  Title (up) Do we have any hope of detecting scattering between dark energy and baryons through cosmology? Type Journal Article
  Year 2020 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 493 Issue 1 Pages 1139-1152  
  Keywords cosmic background radiation; cosmological parameters; cosm logy: observations; dark energy; large-scale structure of Universe  
  Abstract We consider the possibility that dark energy and baryons might scatter off each other. The type of interaction we consider leads to a pure momentum exchange, and does not affect the background evolution of the expansion history. We parametrize this interaction in an effective way at the level of Boltzmann equations. We compute the effect of dark energy-baryon scattering on cosmological observables, focusing on the cosmic microwave background (CMB) temperature anisotropy power spectrum and the matter power spectrum. Surprisingly, we find that even huge dark energy-baryon cross-sections sigma(xb) similar to O(b), which are generically excluded by non-cosmological probes such as collider searches or precision gravity tests, only leave an insignificant imprint on the observables considered. In the case of the CMB temperature power spectrum, the only imprint consists in a sub-per cent enhancement or depletion of power (depending whether or not the dark energy equation of state lies above or below -1) at very low multipoles, which is thus swamped by cosmic variance. These effects are explained in terms of differences in how gravitational potentials decay in the presence of a dark energy-baryon scattering, which ultimately lead to an increase or decrease in the late-time integrated Sachs-Wolfe power. Even smaller related effects are imprinted on the matter power spectrum. The imprints on the CMB are not expected to be degenerate with the effects due to altering the dark energy sound speed. We conclude that, while strongly appealing, the prospects for a direct detection of dark energy through cosmology do not seem feasible when considering realistic dark energy-baryon cross-sections. As a caveat, our results hold to linear order in perturbation theory.  
  Address [Vagnozzi, Sunny] Univ Cambridge, Kat Inst Cosmol, Madingley Rd, Cambridge CB3 0HA, England, Email: sunny.vagnozzi@ast.cam.ac.uk  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000518156100081 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4320  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva