toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Barenboim, G.; Calatayud-Cadenillas, A.M.; Gago, A.M.; Ternes, C.A. url  doi
openurl 
  Title (up) Quantum decoherence effects on precision measurements at DUNE and T2HK Type Journal Article
  Year 2024 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 852 Issue Pages 138626 - 11pp  
  Keywords  
  Abstract We investigate the potential impact of neutrino quantum decoherence on the precision measurements of standard neutrino oscillation parameters in the DUNE and T2HK experiments. We show that the measurement of delta(CP), sin(2) theta(13) and sin(2) theta(23) is stronger effected in DUNE than in T2HK. On the other hand, DUNE would have a better sensitivity than T2HK to observe decoherence effects. By performing a combined analysis of DUNE and T2HK we show that a robust measurement of standard parameters would be possible, which is not guaranteed with DUNE data alone.  
  Address [Barenboim, G.] Univ Valencia, CSIC, Inst Fis Corpuscular, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: gabriela.barenboim@uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001229361000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6131  
Permanent link to this record
 

 
Author Gil-Dominguez, F.; Molina, R. url  doi
openurl 
  Title (up) Quark mass dependence of the D*s0 (2317) and D s1 (2460) resonances Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 109 Issue 9 Pages 096002 - 17pp  
  Keywords  
  Abstract We determine the quark mass dependence-light and heavy-of the D*s0(2317) and Ds1(2460) properties, such as, mass, coupling to D(*)K, scattering lengths and compositeness, from a global analysis I = 0 for different boosts and two pion masses. The formalism is based in the local hidden-gauge interaction of Weinberg-Tomozawa type which respects both chiral and heavy quark spin symmetries, supplemented by a term that takes into account the D(*)K coupling to a bare cs<overline> component. The isospin violating decay of the D*s0(2317) -> D+s pi 0 is also evaluated.  
  Address [Gil-Dominguez, F.; Molina, R.] Ctr Mixto Univ Valencia, Dept Fis Teor, CSIC, Parc Cientif UV,C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: fernando.gil@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001224715500005 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 6134  
Permanent link to this record
 

 
Author Chen, M.C.; King, S.F.; Medina, O.; Valle, J.W.F. url  doi
openurl 
  Title (up) Quark-lepton mass relations from modular flavor symmetry Type Journal Article
  Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages 160 - 28pp  
  Keywords Discrete Symmetries; Flavour Symmetries; Theories of Flavour  
  Abstract The so-called Golden Mass Relation provides a testable correlation between charged-lepton and down-type quark masses, that arises in certain flavor models that do not rely on Grand Unification. Such models typically involve broken family symmetries. In this work, we demonstrate that realistic fermion mass relations can emerge naturally in modular invariant models, without relying on ad hoc flavon alignments. We provide a model-independent derivation of a class of mass relations that are experimentally testable. These relations are determined by both the Clebsch-Gordan coefficients of the specific finite modular group and the expansion coefficients of its modular forms, thus offering potential probes of modular invariant models. As a detailed example, we present a set of viable mass relations based on the Gamma 4 approximately equal to S4 symmetry, which have calculable deviations from the usual Golden Mass Relation.  
  Address [Chen, Mu-Chun] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA, Email: muchunc@uci.edu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001169490600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5981  
Permanent link to this record
 

 
Author Di Gregorio, E.; Staelens, M.; Hosseinkhah, N.; Karimpoor, M.; Liburd, J.; Lim, L.; Shankar, K.; Tuszynski, J.A. url  doi
openurl 
  Title (up) Raman Spectroscopy Reveals Photobiomodulation-Induced α-Helix to β-Sheet Transition in Tubulins: Potential Implications for Alzheimer's and Other Neurodegenerative Diseases Type Journal Article
  Year 2024 Publication Nanomaterials Abbreviated Journal Nanomaterials  
  Volume 14 Issue 13 Pages 1093 - 21pp  
  Keywords proteins; protein dynamics; protein structure; non-invasive therapies; low-level laser therapy; spectroscopy; amide bands; amide I; spectral decomposition  
  Abstract In small clinical studies, the application of transcranial photobiomodulation (PBM), which typically delivers low-intensity near-infrared (NIR) to treat the brain, has led to some remarkable results in the treatment of dementia and several neurodegenerative diseases. However, despite the extensive literature detailing the mechanisms of action underlying PBM outcomes, the specific mechanisms affecting neurodegenerative diseases are not entirely clear. While large clinical trials are warranted to validate these findings, evidence of the mechanisms can explain and thus provide credible support for PBM as a potential treatment for these diseases. Tubulin and its polymerized state of microtubules have been known to play important roles in the pathology of Alzheimer's and other neurodegenerative diseases. Thus, we investigated the effects of PBM on these cellular structures in the quest for insights into the underlying therapeutic mechanisms. In this study, we employed a Raman spectroscopic analysis of the amide I band of polymerized samples of tubulin exposed to pulsed low-intensity NIR radiation (810 nm, 10 Hz, 22.5 J/cm2 dose). Peaks in the Raman fingerprint region (300-1900 cm-1)-in particular, in the amide I band (1600-1700 cm-1)-were used to quantify the percentage of protein secondary structures. Under this band, hidden signals of C=O stretching, belonging to different structures, are superimposed, producing a complex signal as a result. An accurate decomposition of the amide I band is therefore required for the reliable analysis of the conformation of proteins, which we achieved through a straightforward method employing a Voigt profile. This approach was validated through secondary structure analyses of unexposed control samples, for which comparisons with other values available in the literature could be conducted. Subsequently, using this validated method, we present novel findings of statistically significant alterations in the secondary structures of polymerized NIR-exposed tubulin, characterized by a notable decrease in alpha-helix content and a concurrent increase in beta-sheets compared to the control samples. This PBM-induced alpha-helix to beta-sheet transition connects to reduced microtubule stability and the introduction of dynamism to allow for the remodeling and, consequently, refreshing of microtubule structures. This newly discovered mechanism could have implications for reducing the risks associated with brain aging, including neurodegenerative diseases like Alzheimer's disease, through the introduction of an intervention following this transition.  
  Address [Di Gregorio, Elisabetta; Staelens, Michael; Tuszynski, Jack A.] Univ Alberta, Fac Sci, Dept Phys, Edmonton, AB T6G 2E1, Canada, Email: michael.staelens@ific.uv.es  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001269841000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6204  
Permanent link to this record
 

 
Author Aristizabal Sierra, D.; De Romeri, V.; Ternes, C.A. url  doi
openurl 
  Title (up) Reactor neutrino background in next-generation dark matter detectors Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 109 Issue 11 Pages 115026 - 7pp  
  Keywords  
  Abstract Third -generation dark matter detectors will be fully sensitive to the 8 B solar neutrino flux. Because of this, the characterization of such a background has been the subject of extensive analyses over the last few years. In contrast, little is known about the impact of reactor neutrinos. In this paper, we report on the implications of such a flux for dark matter direct -detection searches. We consider five potential detector deployment sites envisioned by the recently established XLZD Consortium: SURF, SNOLAB, Kamioka, LNGS, and Boulby. By using public reactor data, we construct five reactor clusters -involving about 100 currently operating commercial nuclear reactors each -and determine the net neutrino flux at each detector site. Assuming a xenon -based detector and a 50 ton -year exposure, we show that in all cases the neutrino event rate may be sizable, depending on energy recoil thresholds. Of all possible detector sites, SURF and LNGS are those with the smallest reactor neutrino background. On the contrary, SNOLAB and Boulby are subject to the strongest reactor neutrino fluxes, with Kamioka being subject to a more moderate background. Our findings demonstrate that reactor neutrino fluxes should be taken into account in the next round of dark matter searches. We argue that this background may be particularly relevant for directional detectors, provided they meet the requirements we have employed in this analysis.  
  Address [Sierra, D. Aristizabal] Univ Tecn Federico Santa Maria, Dept Fis, Casilla 110 V,Ave Espana 1680, Valparaiso, Chile, Email: daristizabal@uliege.be;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001255433200010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6167  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva