toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Centelles Chulia, S.; Ma, E.; Srivastava, R.; Valle, J.W.F. url  doi
openurl 
  Title (up) Dirac neutrinos and dark matter stability from lepton quarticity Type Journal Article
  Year 2017 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 767 Issue Pages 209-213  
  Keywords  
  Abstract We propose to relate dark matter stability to the possible Dirac nature of neutrinos. The idea is illustrated in a simple scheme where small Dirac neutrino masses arise from a type-I seesaw mechanism as a result of a Z(4) discrete lepton number symmetry. The latter implies the existence of a viable WIMP dark matter candidate, whose stability arises from the same symmetry which ensures the Diracness of neutrinos.  
  Address [Centelles Chulia, Salvador; Srivastava, Rahul; Valle, Jose W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Edificio Inst Paterna,C Catedrat Jose Beltran 2, E-46980 Valencia, Spain, Email: salcen@alumni.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000397861700032 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3024  
Permanent link to this record
 

 
Author Peinado, E.; Reig, M.; Srivastava, R.; Valle, J.W.F. url  doi
openurl 
  Title (up) Dirac neutrinos from Peccei-Quinn symmetry: A fresh look at the axion Type Journal Article
  Year 2020 Publication Modern Physics Letters A Abbreviated Journal Mod. Phys. Lett. A  
  Volume 35 Issue 21 Pages 2050176 - 9pp  
  Keywords Peccei-Quinn symmetry; axion; neutrinos  
  Abstract We show that a very simple solution to the strong CP problem naturally leads to Dirac neutrinos. Small effective neutrino masses emerge from a type-I Dirac seesaw mechanism. Neutrino mass limits probe the axion parameters in regions currently inaccessible to conventional searches.  
  Address [Peinado, Eduardo] Univ Nacl Autonoma Mexico, Inst Fis, AP 20-364, Ciudad De Mexico 01000, Mexico, Email: epeinado@fisica.unam.mx;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-7323 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000550796000006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4467  
Permanent link to this record
 

 
Author Mandal, S.; Romao, J.C.; Srivastava, R.; Valle, J.W.F. url  doi
openurl 
  Title (up) Dynamical inverse seesaw mechanism as a simple benchmark for electroweak breaking and Higgs boson studies Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 029 - 38pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract The Standard Model (SM) vacuum is unstable for the measured values of the top Yukawa coupling and Higgs mass. Here we study the issue of vacuum stability when neutrino masses are generated through spontaneous low-scale lepton number violation. In the simplest dynamical inverse seesaw, the SM Higgs has two siblings: a massive CP-even scalar plus a massless Nambu-Goldstone boson, called majoron. For TeV scale breaking of lepton number, Higgs bosons can have a sizeable decay into the invisible majorons. We examine the interplay and complementarity of vacuum stability and perturbativity restrictions, with collider constraints on visible and invisible Higgs boson decay channels. This simple framework may help guiding further studies, for example, at the proposed FCC facility.  
  Address [Mandal, Sanjoy; Valle, Jose W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna,C Catedratico Jose Beltran 2, E-46980 Valencia, Spain, Email: smandal@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000672676400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4917  
Permanent link to this record
 

 
Author Mandal, S.; Srivastava, R.; Valle, J.W.F. url  doi
openurl 
  Title (up) Electroweak symmetry breaking in the inverse seesaw mechanism Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 212 - 28pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract We investigate the stability of Higgs potential in inverse seesaw models. We derive the full two-loop RGEs of the relevant parameters, such as the quartic Higgs self-coupling, taking thresholds into account. We find that for relatively large Yukawa couplings the Higgs quartic self-coupling goes negative well below the Standard Model instability scale similar to 10(10) GeV. We show, however, that the “dynamical” inverse seesaw with spontaneous lepton number violation can lead to a completely consistent and stable Higgs vacuum up to the Planck scale.  
  Address [Mandal, Sanjoy; Valle, Jose W. F.] Univ Valencia, Inst Fis Corpuscular, AHEP Grp, CSIC, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: smandal@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000634824700004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4780  
Permanent link to this record
 

 
Author Bonilla, C.; Nebot, M.; Valle, J.W.F.; Srivastava, R. url  doi
openurl 
  Title (up) Flavor physics scenario for the 750 GeV diphoton anomaly Type Journal Article
  Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 93 Issue 7 Pages 073009 - 5pp  
  Keywords  
  Abstract A simple variant of a realistic flavor symmetry scheme for fermion masses and mixings provides a possible interpretation of the diphoton anomaly as an electroweak singlet “flavon.” The existence of TeV scale vectorlike T-quarks required to provide adequate values for Cabibbo-Kobayashi-Maskawa (CKM) parameters can also naturally account for the diphoton anomaly. Correlations between V-ub and V-cb with the vectorlike T-quark mass can be predicted. Should the diphoton anomaly survive in a future run, our proposed interpretation can also be tested in upcoming B and LHC studies.  
  Address [Bonilla, Cesar; Nebot, Miguel; Valle, Jose W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, Parc Cient Paterna C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: cesar.bonilla@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000374548300003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2669  
Permanent link to this record
 

 
Author Centelles Chulia, S.; Srivastava, R.; Valle, J.W.F. url  doi
openurl 
  Title (up) Generalized bottom-tau unification, neutrino oscillations and dark matter: Predictions from a lepton quarticity flavor approach Type Journal Article
  Year 2017 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 773 Issue Pages 26-33  
  Keywords  
  Abstract We propose an A(4) extension of the Standard Model with a Lepton Quarticity symmetry correlating dark matter stability with the Dirac nature of neutrinos. The flavor symmetry predicts (i) a generalized bottom-tau mass relation involving all families, (ii) small neutrino masses are induced a la seesaw, (iii) CP must be significantly violated in neutrino oscillations, (iv) the atmospheric angle theta(23) lies in the second octant, and (v) only the normal neutrino mass ordering is realized.  
  Address [Chulia, Salvador Centelles; Srivastava, Rahul; Valle, Jose W. F.] Univ Valencia, AHEP Grp, Inst Fis Corpuscular, CSIC, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: salcen@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000413294200004 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3340  
Permanent link to this record
 

 
Author Addazi, A.; Marciano, A.; Morais, A.P.; Pasechnik, R.; Srivastava, R.; Valle, J.W.F. url  doi
openurl 
  Title (up) Gravitational footprints of massive neutrinos and lepton number breaking Type Journal Article
  Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 807 Issue Pages 135577 - 8pp  
  Keywords  
  Abstract We investigate the production of primordial Gravitational Waves (GWs) arising from First Order Phase Transitions (FOPTs) associated to neutrino mass generation in the context of type-I and inverse seesaw schemes. We examine both “high-scale” as well as “low-scale” variants, with either explicit or spontaneously broken lepton number symmetry U(1)(L), in the neutrino sector. In the latter case, a pseudo-Goldstone majoron-like boson may provide a candidate for cosmological dark matter. We find that schemes with softly-broken U(1)(L), and with single Higgs-doublet scalar sector lead to either no FOPTs or too weak FOPTs, precluding the detestability of GWs in present or near future measurements. Nevertheless, we found that, in the majoron-like seesaw scheme with spontaneously broken U(1)(L), at finite temperatures, one can have strong FOPTs and non-trivial primordial GW spectra which can fall well within the frequency and amplitude sensitivity of upcoming experiments, including LISA, BBO and u-DECIGO. However, GWs observability clashes with invisible Higgs decay constraints from the LHC. A simple and consistent fix is to assume the majoron-like mass to lie above the Higgs-decay kinematical threshold. We also found that the majoron-like variant of the low-scale seesaw mechanism implies a different GW spectrum than the one expected in the high-scale seesaw. This feature will be testable in future experiments. Our analysis shows that GWs can provide a new and complementary portal to test the neutrino mass generation mechanism.  
  Address [Addazi, Andrea; Marciano, Antonino] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China, Email: andrea.addazi@lngs.infn.it;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000571765700055 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4543  
Permanent link to this record
 

 
Author Abbas, G.; Abyaneh, M.Z.; Biswas, A.; Gupta, S.; Patra, M.; Rajasekaran, G.; Srivastava, R. url  doi
openurl 
  Title (up) High scale mixing relations as a natural explanation for large neutrino mixing Type Journal Article
  Year 2016 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 31 Issue 17 Pages 1650095 - 47pp  
  Keywords  
  Abstract The origin of small mixing among the quarks and a large mixing among the neutrinos has been an open question in particle physics. In order to answer this question, we postulate general relations among the quarks and the leptonic mixing angles at a high scale, which could be the scale of Grand Unified Theories. The central idea of these relations is that the quark and the leptonic mixing angles can be unified at some high scale either due to some quark lepton symmetry or some other underlying mechanism and as a consequence, the mixing angles of the leptonic sector are proportional to that of the quark sector. We investigate the phenomenology of the possible relations where the leptonic mixing angles are proportional to the quark mixing angles at the unification scale by taking into account the latest experimental constraints from the neutrino sector. These relations are able to explain the pattern of leptonic mixing at the low scale and thereby hint that these relations could be possible signatures of a quark lepton symmetry or some other underlying quark lepton mixing unification mechanism at some high scale linked to Grand Unified Theories.  
  Address [Abbas, Gauhar; Abyaneh, Mehran Zahiri] Univ Valencia, CSIC, IFIC, Apt Correus 22085, E-46071 Valencia, Spain, Email: Gauhar.Abbas@ific.uv.es;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000379878600005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2764  
Permanent link to this record
 

 
Author Addazi, A.; Ricciardi, G.; Scarlatella, S.; Srivastava, R.; Valle, J.W.F. url  doi
openurl 
  Title (up) Interpreting B anomalies within an extended 331 gauge theory Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 106 Issue 3 Pages 035030 - 14pp  
  Keywords  
  Abstract In light of the recent R-K(*) data on neutral current flavor anomalies in B -> K-(*())l(+)l(-) decays, we reexamine their quantitative interpretation in terms of an extended 331 gauge theory framework. We achieve this by adding two extra lepton species with novel 331 charges, while ensuring that the model remains anomaly-free. In contrast to the canonical 331 models, the gauge charges of the first and second lepton families differ from each other, allowing lepton-flavor universality violation. We further expand the model by adding the neutral fermions required to provide an adequate description for small neutrino masses.  
  Address [Addazi, Andrea] Sichuan Univ, Coll Phys, Ctr Theoret Phys, Chengdu 610065, Peoples R China, Email: Addazi@scu.edu.cn;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000872136400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5393  
Permanent link to this record
 

 
Author Barreiros, D.M.; Joaquim, F.R.; Srivastava, R.; Valle, J.W.F. url  doi
openurl 
  Title (up) Minimal scoto-seesaw mechanism with spontaneous CP violation Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 04 Issue 4 Pages 249 - 21pp  
  Keywords Neutrino Physics; CP violation  
  Abstract We propose simple scoto-seesaw models to account for dark matter and neutrino masses with spontaneous CP violation. This is achieved with a single horizontal Z8 discrete symmetry, broken to a residual Z2 subgroup responsible for stabilizing dark matter. CP is broken spontaneously via the complex vacuum expectation value of a scalar singlet, inducing leptonic CP-violating effects. We find that the imposed Z8 symmetry pushes the values of the Dirac CP phase and the lightest neutrino mass to ranges already probed by ongoing experiments, so that normal-ordered neutrino masses can be cornered by cosmological observations and neutrinoless double beta decay experiments.  
  Address [Barreiros, D. M.; Joaquim, F. R.] Univ Lisbon, Dept Fis, Inst Super Tecn, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal, Email: debora.barreiros@tecnico.ulisboa.pt;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000646917200003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4814  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva